MANUAL OF SUBMARINE MINING PART II.

Ex Libris

Presented to the Engineer Corps Memorial Centre

By

On22. Junsé 2017
Received by WeẼ Worpley
On behalf of the RNZE Corps Memorial Centre
RNZECT ECMC 6.98.5.

(0)ffice bopy

MANUAL

Or

SUBMARINE MINING.

PARTエエ_

DRILL BOOK.-PART II.

LONDON:
PRINTED FOR HER MAJESTY'S STATIONERY OFFICE BY HARRISON AND SONS, ST. MARIIN'S LANE,

PRINTERE IN ORDINAET TO MER MAJEETY.
1891

ЈAUKAM

(Wt. 4166 600 $5 / 91-\mathrm{H} \& \mathrm{~S}$ 4805)

PREFACE

l'art II of the Revised Submarine Mining Manual deals generally with the practical work of Submarine Mining Afloat.

It has been considered desirable to include instructions as to the method of keeping the woiking records of a Submarine Mine Defence, and the stale of preparation and system of identification of the materiel.

A glossary of certain nautical terms is given to assist those under instruction. The information is mainly taken from Dixon Kemp's Manual of Yacht and Boat Sailing, by permission of the Author.

TABLE OF CONTENTS.

CHAPTER 1.

Bow-Bqafg-Rowing and Management of Sicact Boate,

Rowing-boats commonly used in the Submarine Mining Serpico-
Weight of-Stores for-Rowing and sculling-Nautical terms
-Care of-Housing and moornge-Hauling up and down slips and beaches-Mooringe for small boats- Rowing drillRowing in siagle-banked loats-Salutes in mititary bostaGeneral instinations and hints on the manngement of small bosts-Sailing boats-Shoving off-Landing through surf-Trim-Rowing in rough water-Steering-Scull-holes-Scull-ing--Bringing a bost alongaide-Towing

CHAPTER II.

Strambrs and other Subimabine Mining Vebbrle.
Establishment of steamers and beats-Arrangements for supply und repair of vessels-Deseription of various ateamers, boata, and applisnces-Hired vessels, requirements and fittingeTable giving oharacteristics of steamers and launches-Crews roquired-Duties of crew-Fire Regulations

CHAPTER III.

Suryeit on Mint-bikid.

General Sohqme of. Defence-Plans required :-
A.-Plan on small scale showing whole stheme.
$\mathrm{B}_{n} \rightarrow$ Reqord of existing sfate of defence area, with all permaneut works, leading mark β, shoals, soundinge, \&'c.
C. - Mine-Geld plan, with acc uate position of minee, soundings, alignment marke, measurements, \&c.
D.-Trauscriptg of C for use in mine-field.

E,-Diagrame far use in junction-box boats.
F.-Diagram of plignments for aligrment party.
G.-Plan of friendly channell, leading marks and buoysMethod of preparing large-scale pluns-Scales-Triangulation -Local surveys-Alighmente, xattural and artificial-Baze, or distance belween marks-Permanont marks, advantages-Form of marks-Colouring of marks-Arrangement and identification of marke-Marks for sextant ohservation-Fookinge for marke.
Buoying positions in the mine-field-Goneral-Dilection of method tu bef employed-Methode in gemeral use:-
(i.) Intergettow of two Alignmento-Angle of intersection of aligaments-Possible exavers due tas thia method - Souroen of inaturacy-Application of method, for fixing one or two positions. scourately. by means of adigrimeut of oonspiououk permanent manks, 1 mpor tance of exeroiging care in fixing positions of, and orecting artificial marks.
(ii.) Ono Alignment and Sextant Angle-Limitations of nucurasy of this method-Example of "probable erross"
-Conditions necessary for accurate worl-Application of prigqiplpe fo a lepg alignmpat-Warying to a vertical base.
(iii.) Aetual Msasurement-When employed, description of various methods and conditions necessary for acourate work-Measurement along the bottom-Measuring lines.
(iv.) By means of the "ipRopition-finder"-Conditions necessary for accurate worli-If time were of groat irppartonco the apuryey might be carcied put by means of the "position-finder- - Lutes for usé of institumeth A Accuracy, and speed of method-Mipe alignmentsLayiog mines or buoys by this method:
(Y_{0}) Fixing unknown positions ty thd of more Sextiont Angles and Station Pointer - Metilod not ápplicable to finding pre-determined' positions - पse in special casesDouble eextant-Mathod of plotting position-5 (tution pointer-(For orrors see Appendix TI)-Conditions necesanery for aceurate work - Several pointe dhoild be chosen for observation to epploy with these conditions.
(vi.) Laying out' Marking-broys-Sounding-Lead and lead-line-Maris on line-Another method-Sounding rods--Sounding in swift currents-Sounding book

CHAIFTISR MV.

Land cables, diteh 'defirable' where 'tdetrootrs are some distance froir the ghate thdyrecting pits gendrally' required, where
 cables-Seldoza' defitralie ' Wo 'edry the mine freld dables into the test-room without a break-Spare cores to be provided in such cables-ldentification of corea and cables-Cable trench -Connecting pits to belplatiod ifd a position, and well concealed, covered hy rifle-fire; diagrams of connections of cores to be prepared-elefinds to be well cortcealled between high and low water--Cable cuts- Use of Shoxe-end cable, it should run out to four fathgens at lo wh wect Landir 'shore entd Billigic

Multiple cqhlam may sométimes be laid out périmaneritly-Arrangemants to be perfected for getting cartlef quickly out of tankeLaying from drumis and from cable-lighter- Weight bf drums and cables-Laying over bow and sterty-btekes- StóppersLaying two cable at same time-Broying track of cables-
 from and to the phicr-hwing from the wil

CHAPTER N

Jpačmioz-box Mooringe.

Juntrobr-bbtee are generally bubyed in peace time-Bnape must be, removed in war-Dorment buoye may be used for main cables.
 the two methods, with directions roaparthing moorings, buoye,
 nite aty dffidrent viationg.

 water-Sirrkew on main ceble sometianes desirablemtowering the box orerbeard - Raising the boxtrideling san "mobile" jundititn sbox beat:
PAQE
Dormant Jumetion box Bwoys.
Junction-box Boat's Creys-Stores-Dutios-Management of bont -Safety of crew
騔

Shingime and Laying Odt Mimes.

Abstract

General-Suceass in "laying out" depends much on the care exercised in "slinging"-Large steamers can carry a good number of mines-not always a good mantr $\sqrt{ }$ © definito rule can be laid down on this pint-glinging from Highter moored in mine-field-Not practicable in lunezes if there is any soa-Generally advisable to transfer some mines to a lighter, even if she is not taken to mine-îeldtr+ Pogition of mine when slungStores used in alinging und laying out mines-Lowering lines, ELU-Description of the progeas of slinging an T. O. mina Slinging drills-Cqming up to the pqition of the mine and manceuvring the vensel during "laypg, ont TMarking and watek buoys-Illustralion of above reruarks-fuints to be attended to in letting go mines-Cable to be clear suad pasied to boat with a throw line-Dotmdnt rivited-Drills for laying out E. C. mines on Fork syatem.

Observation mines-generally laick in "lines" of 2,$3 ;$ ar $\mu_{1}-$ Fepceutions to be alosernded is slinging - W eighte, to , be belanced as much as possible-Mizion to be slyung an up-streemp sidpSlinging a Hne of mineg - Watah bueys to be attaphed to the two end mines-Laying ont lizes of mines-Gnound minge- Water if possible - Buoyant lines of mines difficult to lay in' over 70 feet of water with accuracy- Points to be attended to in laying out lines of mines-brill for sáne

CHAPTER VII

sigusliva.

(V) -Militia sind Volunteer signallers-Miscellanéous plignala-Speed-A ceuracy - Principles of pisual gignalling-Method of communication-Sending to two or more stations at onceTrpert signellera--A ppsizitus ita 1 method of use-HIatrge lage ${ }^{2}$ -Small flagi-The hime ight-Donstithent parts bf - Oxygen gas -To trim the larifif- Io obtain ' ofte Aight-1 Kange- The
 by sound-hsiondlling dish- - Betinnerif Practice with recarding instrumente

APPEFDIX 1.

Workimg Rrcoonds and Perpabation of Storks 94
APPENDIX I.
The Sexxakt and Stacton Pointer 100
APPENDIX III.

LIST OF PLATES.--PART II.

CHAPTER I.

None.

CHAPTER II. TO FACR

Platis					F
I.	Design for 80 -ft, mooring steamer	.	-	4	13
	48-ft. steum launch', Erg, etc.	',	.	-	13
III.	Fittings for hired vessels	.	..		18

CHAPTER III.
IV. Alignments .a
VII. Intersection of tw: alignmente, probable errors .. 33
VIII. One alignment and sextant angle (... ... 35

IX, Y. One alignment and sextant angle (oontinued) ., 36
XI. Two sextant angles and station-pointer (continued) i\} 42
XII. Two sextant angles and station-pointer (continued) \} 42

CHAPTER IV.
XIII. Arrangement of shore-ende of ceble 50

CHAPTER ∇.
XIV, XV, XVI, Junction-box maorings 55, 56, 57
XVII. Dormant junction-box buoy 59

CHAFTER VI.
XVIII. 100 lb . E. C. mine on steam daunoh

XLX. 500 lb . buogant E. C. mine on "Minet ${ }^{3 i} \quad \therefore \quad$.. 66
XX. Dormant E. C. 100 lb . mine on steam launeh .

XXI, 49-ft, steam leunch with two E. D, mines
XXII, XXIII. Laying out F. C. mines, coming up to potation 70
XXIV. Laying out. K. C. mine with short lowering lines,
XXV. Laying out F. C. mine with lowering hook
XXVI. Laying out ground line of mines in 50 feet of water ... 76
XXVII. Slinging and laying out buoyant line of mines in 76 70 feot of water, even botton, and slack tide.
XXVIII. "Line" systom, four 500 lb . ground mines on "Sir 76 Francis Head?"

CHAPTER VIY.
XXIX. Flag aignal ling and teleseopes 85

APPENDIX IT.
XXX, The sextant.. 100

	XX. Verniera , 108

MANUAL

OF

SUBMARINE MINING.

PART 11.

CHAPTER I.

ROW-BOATS-ROWING AND MANAGEMENT OF SMALL BOATS.

Contente.

Rowiag-boats commonly used in the Submariue Mining Secvice. -Weights of.-Stores fotr,--KRowing.and Scullingt.n-Nautfeal terms.-Care of.-Housing and mooring.-Harling up and down slips and beaches. - Moowings for small boats.-Rowing drill --Rowing in single-banked boats.-Salutes in militaty boats.-General instructions and hints on the management of small boats.-Sailing boats.-Shoving off,-Landing through surf.-Trim.-Rowing in rough water,-Steering.-Scull-holes,-Sculking.-Bringing a boat alongaikle.-Towing.

Kow-booss-Rowing and Managonent of Small Boats.
The rowing-boats commonly used in the submarine mining service are:-
$\left.\begin{array}{l}\left.\begin{array}{l}\text { Cutters } \\ \text { Pinnaces }\end{array}\right\} \text { Double-banked boats. } \\ \text { Gigg } \\ \text { Whale-boats } \\ \text { Dinghies }\end{array}\right\}$ Single-banked boats.

Drawings and Speçifications have been prepared for cutters, gige and dinghies, to govern future supplies.

The approved design for a cutter shows a boat 30 itt. long by Cutters. 8 ft . 1 in. bearu and 2 ft . $8 \frac{1}{2}$ in. depth, fitted for 12 oars.

These boats are ured for conveying men and stores from place to place, for laying out marking buoys and small charges, as junction-box boats when more suitable boati are nots availaile, and for various nther dutiea.

There are some pinnaces still in the service, which form useful Pinnaces junction-box boats, except in very rough water or strong tides. When fitted with a derrick and a hand crab they can be used to (4805)
underrun cables and light E.C. mines. These boats are stronger and heavier built than cutters.
The gigs supplied ase 22 ft . by 5 ft .6 in. hy 2 ft 2 in ., and are fitted for four orrs.
They are provided also with a mast and dipping lug sail. These boats are used for sounding, laying marking buoys, and other light work iu the mine-field, as well as for transport dutios $;$ and supemintendence.

These foads, which for maty purines are tod be pheforred to gigs, exist at some stations. They vaty in length from 24 ft . to 27 ft .; the longer boats pulling five cuirs and the shorter four.

These boats are of various sizes and shapes, the approved pattern being 14 ft . by 5 ft 2 in by 2 ft .2 in ., fitted for three oars, but generally usinig only two.

These boats are of the greatest use in submarine mining work, and in the mine-field ; every steamer should have one, either on the davits or laying off within hail. While work is going on, the boat should not be sent far away from the steamer. Iu the event of " man overboard," a foul under the joggle, or a cable in the screw, a diughy on the spot may save much viluable time, or avert a possible disaster.

The following are the approximate weights of Service boats empty :-

\$7eeta				Cwt.	Feet			Owb
42	Philing	aunch	-	75	22	Ging		7
32.	Pinnace	. .	.	43	27	Whalebost		71 ${ }^{\frac{1}{2}}$
30	Cutter	*		182	25			7
28		:	*	17	14	Dinghy ..	\cdots	$4 \frac{1}{2}$
24,	Gig	..		$7 \frac{1}{2}$				

Stombs for Rpwiyg-bqats used in the Scumarine Mining Service.

Stores.			\%	\%	菷	育	Remarks.
							* 2 spare, 2 atroka. 11 spares: 1 Bqu Onra, Chinvied ass required. Cumied as requytur

Rawing and Sculling.

All submariue minere must be taughz to wow and scull. The instraction in rowing is commenced in a.cutter, after which the men should leafu to row in gigs-and dinghies.

Durting the courte of rowing drill the men should be taught the meanings andapplication of commor mautical terms, andthe care and management of small boats. The proper managetocont of boate under varibus conditions of wind and sea can only be fully laipat by experience, but a good deal may be done daring a course of instruction towards teaching men some of the main rules of conduct in small boats, such as those relating to trim, hehaviour in boate-both uuder sail and nars-coming alongside, towing, rowing in a seaway, lainding on a betoh, sboving' off from a beach, heuling boats up sind down slips, mooring, \&c.
The mennings of the following nantical terms should ked explained te men under instruction in rowing s--

Contitnmetion of bocts.-Iull, bow, stern, counter, quarter, ballge, beam, draught, free loard, topsides, gunwale, stem, keel, keelson, sternpost, -dead-wreod, fioor, bottom boarde, ribe or timbers, planking, carvel-built, clinker-builty, diagonal-hoult, thwarth, stretcher, rowlock poppet, crutch, painter, sternfast, step of mast, rudder, tiller, yoke, yoke-lines.

Torms ilescrittive of position.-Aherd, astern, abreast, port, starboard, on the bow, on the quarter, abeam, athwartships, aboard, awamh, weather, lee, aft, forward, amidships.

Oars:-Handie, loom, blade, sculle, paddles, shipping and unstripping agve
 shank, stock, wisasher, foreloek or key, ring Oatheading or "catting" anchor.
Method of makking fast or bending on warp and broy lifie to anchors.

Mborings.-Method of meorfing with bridle and buoy-rope. Continuous motrings or "trots" fori a number of small- boats. Mooring with two anchors and cables. Picking up meorings.

Tides and ciarcents.- Flood and ebb tide-duration of flow in each direction. Spring and neap tides. "Frill and chaiage." "Mean higaz water springe " (M.H.W.S.). "Set" of curent. Felocity -how measured.

Care of Boats.

At all stations a well-qualified man should be detailed to look after the small boats. Hey nhould be made responsithe that all triu stores sure kept in groad, opder and ready for immediate use, and should reportat ance all damages and defioiencies.

Boate alsould always be kept in a boat-bouse if possible; if leepat, aflipat for any length of times, they are liable to breiome foul and water-anaked, and consequently heary to pull.

Boats which are too beavy to haul up and down slips constandily, should be hauled up on a beaoli from time to time to be cleaned,
and should be allowel to remain for some time hauled up, so that they may dry thoroughly before they are painted. If exposed to a hot sun while hauled up, they should be covered with a terpaulity or old asil, tha air being allowed free access to the hull both inside and put.

Boats cau be quickly and easily taken out of the water by means of the cranes an the pier-head. If there are no ring bolts in the keel for the propose, it is well to sling the boat in two shrong canvas slingsw, Stopat wooden spreaders, slightly, douger than the beam of the boat, should be used to keep then slings from crusking inthe top sides, and the slings should be , keptif from drawing tegether by lashings made fast to the ring bollis in the stem and sternin port.

Where there is, no boat house, or thene is insuffisient accommot dation for ull the boats, some of them may conveniently be hauled up to dayits ou the pier, pladed eloar of the working froatage, It is well to construct ropfs over these davits to protect the boats from the sun, or to make canvas covers for the boats.

Hanling boats up and down alips and. beacbes.

Moorings for amall boats.

Rowing drill.

Men should be taught to exercise care in hapling boata up and down slips and baachbs; to keep; them on an aven keel, and put rollers under them whem possibles. These precautions will, save the keel and bilges from injury and a lot of unecessary labour. Never hoist a boat in davite, or hayl her up a slip. with woights or water in her. number of boats to be mocred, "trote" may be laid downe: A "troi" consists of a length, of heavy chain securely, apchored or made fast at each end. At sufficient intervals along this qhain, lighter chaings lof a length equal to twioe the depth of water at M.H.W.S. are made fast. These chains or "bridles" are, paised by means of coir buoy lines made fast to watch-buoys mande of dight woods or out of small kege or oil drumss. Where sifgle moorings are used, it is well to introduce a short piece of heary chain betwean the sinkedr and light chain (aboart. 2 fathonas); this will allow the boat to ride easily in a sea to, a short scope of chain without jerking and straining. The bridle chaim should in all cases be "parceelled" with old canvas where it chafes on the gunwale or fair lead: Thn some maces it is advisable to padlock the chain whez mado frast. All mareable stores sbould be removed from moored boats, and they should be visited at least once a day.

Rowing, Daill.

Iustruction in prowidg: should comuence in a double-banked boat, and be continued afterwards in single-banked boats. The details of the drills differ slightly; owing to the fact that the oars siri-singletbanked boats ape not tossed, and are uesually fitted with lanyardes, which allow of the oars being swurg alongeide the boat instead of being " boated "or " laid in," as in a doublebanked boat.

The following is the drill to be observed in cutter rotwing.

It will be seen that many of the words of command are cautions, or for use with crews under jnstruction:-

Fatl Is, (Gret of First (ó Second, \&ec.) Cuttet.

(For crews under inssturction only.)
The instructui (coxswain) will fall in thes (0rew in two ranks and number off. Nos. 1 are bbw-men, and the highest numbers are "strolkes!" The front sanly will be "istarboard oanss". and the rear rank "port oarss" Eioh man must know hisuiplace in the batt.

> Man the Frrst (\&́ce) Cotter.

The boat keepers bring the boat albilyside; the crew take their places in the boat, bringiig with thém such stotes as nidy be required, sit durn bi the thowerts, and wait for orders frofin the cosswain.

The outer bow-man will cast bff and coil down' the praikter; and then assist to fend off, the innar bow-man holding on with his boat-hook.

The inner stroke-oar uses the stern boat-hoók', 'and the remainder of the crew see theip oars elear (the stroke-oars being nearest to the side of the boat), apd, uuless ordered to the contrary, unship their poppets.

Up $\mathrm{O}_{4 \mathrm{RB}}$

The crew get hold of their oars, and, watching the strokeoar, toss them together, placing the handles on the bottom boards bettween their feet, every car upright, blackes "fore and aitt," buter hand just below the leather, * mid-shipp" hand asillow as possible, body upright.

Abte, -This is the position in "Tossed otors."

Shovis Ofg;

Bow-men shove the bow of the boat off, toss their boathooks uprighty, wiatt a payse, boat them together, ssit down, take in fenders, unship poppets, and then toss their oars together. The remainder of the crew take in fenders at the word "shove off;', the inner stroke oarsman keeps the sterne clear, hays in boatbook with hook aft; sits dowt, and tosses his oar.

Down.

All the oars are lifted together about a foot, and let fall quietly with blades flat on the water, the looms being kept, clear of the gunwale; the oars are brought quietly into the rowlocks, and are held korizontally, sqtiare with the boat, and fearfierea.

Note-This is the position of "Laying on pars" it may sometimes be necessary to "down" ours befnye the bark + nuen and stroke have torsed their oars, or to "down" oars on oat side of the boat before the ather.

6 ROW-BOATS-TREWING AND MANAGKMUNT OF BMALL BOATB,

Give Way Together.

(By, Ngmbiers. For crews under instruction only.)
"One." Lean aft, straighten the arms, turning the knuckles down as the blade goes forward (l.en, towards the stem of theboat), bringinig its square with the watar; all aass to be parallel with the stroke oars, blades just clean of the water.
"Two." Dip the blade in the watar, and pull theloam towards you, falling back at the same time, back and arms straight; drop the elbows and wrists on arriving at the end of the atrokg, taking the blade nut of the water, and come to the position of "Laying on oars."

Noter-A pause of about thres seconds is to be made betwreen each ander matil all the crew understand feathering their oare; as they improve, the interval will be lessened, Time taker from port stroke-oar. This word of command may be varied as fatlows :-्नT"Give way, port," pr "Starbpard," or any named oar.

Stand By to Lay on Your Oars (a çaution):
(Followed by-u(0ave).

Complete the stroke, ind come to the position of "Laying on oars."

> Stand By to Tobs Oars (a caution). (Followed by-Tọd OArs)!

Each man bears down amaritly, on his oar with his midship. 2and, causing it to jerk out of the rowlgck, and brings his aar to the position of "Toss ours,"

Note-If oars are to be laid in, the order "Toss oars" will be tollowed by "Lay in your oars," whei they will be laid down quietly in rotation from forward, blades flat and poiuting forward, and the poppets will be shtpped.

Stand By to Hold Water (m, parationd,

(Followed 位- Waco Water.)
Oars to be held perfectly stepilgh, square with the, boat, all the blades nearly upright and same depthrin the water.

Note--Used for checking the boat's way. For crews under instruction, the practice should be commenced from position of " Laying on oars."

Back Water, Ali.
(By Numbers. For crews under instruction only.)
"One." At the word "one," lean back a littie, bringing the handle of the oar close to the whest, blade clear of the wher, and square with it.
"Tivo." Drop the blade in the water, prosing the handle ait
dy bringing the body upright, and return to the position of "Laying om oata."

Noten-Thes wiord should not he given withoart previously dheoking the poat's way. With arews under instruction the gractice ohould bo commenced from the parition of "Laying on Uars." The commanid may be varied as follows :-"Back water, prort," ar "Stashowhd,", oor any nemed ours.

Stand Bx, Bows (a cqution.).
(flallowed by-mowe.)
The bow-mem will look towards each other, toss thoir ores together, wait a pause, lay in their oars, ship poppets, "outt fenders, stand up on head sheets facing the bow with tosseed hoat-hooks, ready to fend off. Remainder of erow mbut fendens" writh oriter hands!

Nora--'This command must be given so that the operation a completed before the next werd of command is givent What trained crews the "caution" is msually omitted.

Way Ewowat

The crew finish their stroke and give ene more; the 'pert strake gives the word "Dp," when the dars are all tosed together and laid in quietly, and poppets shippea. The stroke oaraman nearest to laoding-place stands up and attends atern boat-hoak.

Note. - With crewe under ingtruction, or in case of difficuthy in reaching the landing, the coxswain, instead of giving the wapd "Wayt enough," may give the caution "Stand by to lay of your oars," ${ }^{\text {F }}$ followed by "Uars," and such other words of command-as may be required.

TRowing in Single-barthed Boate.

Mon will be instructed in single-banked boats, such as whaleboats and gigs z_{2} after learning to row in cutters. In these bositi the oans are never tossed, and are gemerally fitted with lanyamds, in which case the oars are "swung"" alougside, instead of being laid in to the boat when going alongside vessel or landing place.

It is usual not to fit the bow oar with a lanyard in any case.
The alterations necessary in the word of command and detail of drill are as follows :-
frewe Ors. - The oars are swurg from atomgive ss the tonat gete clear; "bow" geta his oar out as soon as he has faid in his bast-hook and sat down.
Give War Together.-As in cutters.
Toss OA He, Omitted
Lat on Your Oars?
Hold Watze \quad, With "Cautions," same as in cutters.
Back $\left.W_{\text {ater }} . ..\right\}$
Bewr "Bow" lays in hin oar without toesiag its and procoeds as ind entters.
Way Enocgi. Stroke looks forward over his shoulder and gives the word "swiug " instead of " up." The handles

8 ROW-BOATB-ROWEKG AND MANAGEMXNT OF SMALL ROATS.

of the oars are allowed to go forward, blades in the water; each oarsman, leaning backwards and outwarles, passes the hamdle forward whith his midskip hand.
Note- Olars may be swoung at any time, when passing though a narrow place or clase to an objecti. The anation "stand by to ewhing oarsi" should then be given in good time.

When the oars are laid in, the orutches should be taken in board.

A boat must rever be left alongsidé a gangway, but 88 soon as the crew have got out,' the boatkeepers* must drop her into har pyoper position. The tiller must be taken out and laid inhoard

Dieghitso-Men mast bo exercised in the management of dinghies. Twe men should be able to row a dinghy on a straight course, and bring her alongside a vessel or pier without s goxspain. Men shpuld sleo be tanght to scull with a pair of sculls or paddlef, and to scull with,one oar over the stern.

Salutes in Melitary Boats.

The following are the rules for saluting to be observed in malitary boate (Q , Bug., Section III, 88 A.) :-
(1.) When an Officer is in the boat-

Rank.	When passing	Under orrs.	Moeting Et larding-plece or alongaide ship.
Field Officers ...	Admiral or General	"Lay bi Oare," Officer ablutes.	Crevf "Eyes Trontu," Offieer and cocswain salute.
Field Officers ...	Other naval and military Officers, If genior.	Officer salutes	Officer salutes.
Officers below rank of Field Officet.	Admirdi or General int	\#Toter Oars," Officer salutes.	Grew "Eyes Front," Offioer and, coxstwain ax.lulty
Otilicers below Trank of Field Officer.	Commodote Colonél Captain Lieut.-Colonei	$\begin{aligned} & \text { "Laty on' Oars," } \\ & \text { Oficer wolutes. } \end{aligned}$	Crew "餀es Frant," Officer, and 00x swain salutse.
Officera below rank of Field Officer.	Ottrer مfficers of either Ser vice whom they know to be eenior,	Offioqr salutes ...	Officer salutes.

(2.) When no Officer is in the boat-

When prsaing		Under cars.	Meeting et landingplace or alongaide ship.
$\begin{aligned} & \text { Adminal ... } \\ & \begin{array}{l} \text { Oommodore } \\ \text { Captain } \end{array} . \end{aligned}$	General Officer Colonel. Lient.-Colonel.	"Toss Oars," coxswain salutet.	Onew "Eyes Eppat;" cox awain salutes.
All other Offic	ro ..	"Eey on Oate," doxtráait saluter.	Crew "Jyyes Fronts" coxswain sqlutes,
Norg-In bouta fitted with crutches, oars are never to be tposed, hut the saluto shoula be given bx laying on oarsw			

- Two of the crew detailed for the pruppese.
(8.) In steawboats, engives are to be atopped in thote cases in which, in pulling boats, oars are tossed ; gives are to be eased in those cases in which pulhing bowits " lay on " oars.
 lay on their oars.
(5.) Uoxswains of boats umder oats or sails, when an Officer is in charge, onlyy salute at lainding-places.
(6.) Salutes, in boats ander aars or sails are to be made situting duwn ; in other casea, standing mp, n
(\%.) Boats laying off on their dirs are to sahtis as above, but the bow-men will salute as twell as the coxswain.
(8.) Boat keepere salute standing infiniz the ordindry manner.
(9.) Fior a royal salute, the crew toss oars and statd wisp (in dorble bankeed boate ourly)!

Genenal Ihabructions, and Winsti on the Mandagenient of Small Boats

Silutuce is eiway's th be bbserved in bbafs, ofléss orderk are givivent to the dqutirary'.
 amifdeltips, and sitt down at duce.

Do not sit on the gridwale, or stand on the thwarts: The crew take their places first, and 'passengers and' officers last; officers, and pastengers disembark fitst. The 'seriber officer gets in lasti, and lards tirst.

Olrs are not to be tossed going albitigside a vessel it sea or under way, but must be thrown out of the rowlọcke blades forward, and boated at once; artd, on Ietiving' Hades to be lifted clear'of the gun'wale, the oars being brought aft' into the rowlocks at the order "Out oays." In boats fitted with crutchies, the orrs can be taked 'in after thedy are switng fore and aft by pasking the Fandlep forward inside the Bbat, when the oars can be lifted out of the crutches if desired.

Boats" crews learning to pull are to bave their thwarts changed; so that they may leatotb row on both sides bf the boat, and the dutiea of stroke atid bow bärs.

When pulling', the crew'should ucline the eyes rather to the blades of the oars in front of the m , to ensure time being well observed. Mén should not be allowid to look carelessly about or stare at the' stern sheets!

Masts should qlways be fowered bbfore ghoing alongside a Eailing boats. ressel at sea dr under what.

If a sail does not' set properly, shifting the strop, a fetw inches in or out on the yedrd will often corrent it. If carrint too much weather felm, shift'all the wéight a little aft; 渞 lee helmi, a little forward.

Never belay a sheet,', ant always Kcep the Ludyards clear.
Enil should not' be hoisted in an open boat urtil every man is seated on the bottom boarde as close down ac passible, Etainting up in a beat tinder sail on any account is undesirabie. In lowering the stail, always haul down on the luff, fnd as the sail spils in lowering it, should be gathered in by the hands to leward. Nu one is on arly aiccount to move in the boat without ortlers.

It is better to reef thas to sail a boat on ber side with a whole sail. When reefing a lng! mail with an inexperieniced arew, it is better to lower, the sail right dawn, take in therreef or reefe, and hoiat up again. With a good crow, the reef can he taken in with the sail lowered only enough to allow of the men hooking po the tack and sheet to the reef oringles without standing up. the boat being under way sall the time. The tack and elheet should be secured before the reef points are tied up. hat shating out a reef, always cast off the reef points hefores atarting tack or haly,ards; in this way wery little time noed be lost in elther operation.
Shoving off.
"Showe off" forward firat, uuless it is necessany, to back aut. Neyer ahove off. frpan bath ends of a boat, at the same time.

In getting afloat from a beach, laungh the boat on an even keek at right angles to the water line, keeping one or two men in the stern to keep her from btoaching to 4 , with baathooks ar reversed oars. Do not try and shove a boat off by muin force with oars blades downwards, as it is bad for both the boat and the oars. When the boat is afloat astern the passengers and "crew should get on board, the bow men being left ashoure to shave off more, if necessary. If the water is shoal for some way out, the boat must be walked out by the, crew until fairly afloat.

If there is apy sea coming in on the beach, it is, orten advisable to laupich a square-sterned boat bows first. If any difficulty is apprehended in getting a boat off, the anchor may be drapped some way out before landing. The hogt can thea be warped, put and kept from broaching to while the oars are being got out.

Landing
through surfi.

Landsig through a heavy surf should not be attempted with an inexperienced crew. A whalebiat steered with an oar is the best service boat for such work.

When a boat is left on a beach, she should be hauled up high and dij if the tide is rising. A man should always be left with a boat to Keep her afloat on a falling tide and to look after het generally.

When laoding on a rocky shore with any sea on, the boat should be backed in, the rudder unshipped, and those landing should watch their opportwity to jump out at the right mpmont. The crew should keep the hoat fram buraping with their oars.
"Trimming" a boat consists in disposing; the weights to the best advantage in a fore and aft direction, and this varios very mueh under different cipcumstances ; for inslance, in rowing down the wind, a boat will generally steer and pyll better if she is orimmed a little "by tho stern"-that is if tho weights are moved a little aft of their psual position; but when rowing against the wind she will be difficult to pull and steer in this state, and must be trimmed a little "by the head" (or "by the bow"). Whan raping across the wind, careleesness in trimining the boat may fprow all the work on the oars on one side of the boat, especially in a short broad boat like o dinghy; thus, if the boat is much by the stern, the wind will tend to flow the bow round and throw all the work on the lee oars. In a dinghy the lee oar shauld geenerally be the bow oar.

The weights in a boat should be concentrated as much as
possible in the centre. A boat will ride lighter in a seaway with the weights amidships than if they are distributed all over her or collected in the bowa and btern. Abwat under the latter ponditions will plunge heavily, stop dead, and drench everyome on board, whereas the same boot with the weight collected in the middle as much as possible will side easily, risfon quickly to the sea, and throwiing up little water.
The art of trimming a boat uidenisail to the best adwantage must be learned by experience.

Men who have become fair ars in smoth water oftew find themselves unable to pull in a seaway. It is tben negessary to whethere less to catching the watati, bogether, but to feek the water with the oar before poitting the weight ony to feather high, and to avoid stiffness gerierallor, iThe strake must be slower tham in rmooth swader, and adratitage must be taken of the perionical intiervale of comparatively smpoth water to. get weik on the boat.

Never put the helm; "hard oker" at findot; begin gentily, watil the boat graflyers turning hivay, ondi, theni put it over havider, This allows the hoas to turn witholit stoppinity live wayly In making a sharp tum help the rudder with:the oarses this masy be done in meveral ways: Tho not back woter unlege it is necescary the, turn a hoat in the shortest possible. ppace, It will generaly, spefice
 ahjeretr and the tums not verynskanne, to "give way" on orfe side andi "pull casy," on the ather.

It is advisable to bave scuall holes or crutch sookets in the stern of all row zowatio, as it is oftion desirable to be able to use an oar over the stern for propulsiom pr atetiting.

Gigs and dinghibe can be rowed, ou ap emergengy, with one oas from the after thwart, the ruddei being Itapt ingairlat the odr by means of the yolke lipes.

Scatiling' with one bar over the stern should anly helusadjfor very short distancee.

As a general mule, bring a boat alongside a veesel wiflh, her bow in the sante direetion asi the wessel's bow! In harge boats make a gaod aweej, and gize plenty of room coming alongside, especially in a strong tideway. Knock as little paint off as posteible, rand gote the boat astem or hauled up as soon as she is scleam of. her cuew. Revasmber, that ladem and heavy boatelcarmy. their wey antuch longer than when empty or light, and uake allowante zecordikgly, tespeciadly when thutidg intora camber or ou to a hard beach with a fais wind:

If the vessel is under way, the oars are whoated " at once
 wither thopped down or lorrought, then aloongeides.. The vewael should heave a line into the boat, the bowman tolking a nuiak wurn tauind the bow thwath, araditholding on creasly to coathoff,
 by the use of the rudeler, or an oar ower the atend.l It may be neceesary to take the line raund the second thwant from the bow to make the boat steer tasily ${ }^{\text {. }}$

[^0]Rowing in rough water.

Steering.

Scull hales and sculling.

Bringing a boat alongride.

A short broad boat like a dinugy is best towed with a short painter. In a sea-way or when goingrfast, it is advisable to use twe painters, one made fast to each quarter of the towing vessel.

Insxperienced men should not lie allowad to remain in small boats when 'towed fast, Men' sithing in towed boats should sil rather aft, so that the boat is "by tine stern." If it is necessary to tow with a long painter the weights should move furither dift, or if the boat is empty, some ballast may be required in the stern to keep her from broaching tos or ranging about frorh one quarter to the other.
'Fo get inted a towed boat while under-werys haul the boat shont up under the counter, the crewi getin one at a time, moving aft at once as they do do, ande sititing down, the painter-is thens eased out gradually so that no jerk is brought on the boat. Oapeless ieaoing dut of the plinter may cause an upset, striain the boat; or jerk a man overbcard. "Iff tha bobt is to be bust off, the howman is not to move forwert to get in the painter yntil it is cast ofit tand clear of the reeseel. This should only the idorie by expertenced men.
in A good hand shourld be told iff to. look affer towed boats (especially when stoppingly going astorn, and etarting), to keop tow ropes out of the setew, fiend offyand ease out painters, suc.
\cdots When starting out from a pier with several boats in tow, they shibuld be brought rup, alangeide and mado fast, bow and stem, with painter and sternfast; until the steamer is fairly on her cuiurse, when they'can be edsed off astera. When coming in to a pier, it will usuaily gaved delay to ease elowed; and bring the boats alongside in a sinoilaw manner.

When a number of junction-brox boats are being towed out to the mine-field; it will save time to tow the first boat alongside, if the weather admits of its being done. While No. 1 boat is geitiog hold of the junditiou-blox buoys No. 2 hoat can be brought alongside, and so on. Where the boats are capable of raisine the bures without assistande, it is better to drop them one by one as the buoys are rearhed, each boat being "sheered" by its coxswain so as tn get as near the buoyf as porsible. The steamer should "slow" as she approaches leach brdoy.

Large boats, when townel, should be steered; small bdats should generally be towsd spithla shdrt pairter alose up. Heavier and bigger boats in aso-way require long tow-ropes to ppevent damage from oveb-rumning," beerides whieh the elasticity of a long rope takes up the sudden jerks due to the uneven motion in a sea-way.

Whan towing laden varlargeiboats, the tow-line should be made fast sufficiently far forward in the towing vessel to allow of her being steered properly. Towing alongside with large vessels is only admissible in smooth water. It is' frequently advisable to bring a towed vesael alongside the tag on entering smooth water in a crowded harbour, as it is much easier to make sharp tirns under these circumstances, and at the same time a great deal of room is saved.

* See dutiee of deok-hands, p. 23.

design for 80 fi Mooring Steamer.

 "General Skinner" \&c.
"Mantilus" $=67 \times 14$ dram 4. 6 ". 6 "Soabel" $50^{\circ} \times 12.6$ Armin it 11

CHAPTERR II,

STEANERS AND OTHER SUBM'RINE MINING VESSELS.

Gontents.

Fstablishment of steamers and boats,-Arrangements for supply and repair of vessels. + Description of, various steamers, paatg, and appliances. - Hired, yessels ; requiremerts and fittingzos Table giving characteristics of steamera and launches. ${ }^{\text {a }}$ Crews required.-Duties of crew.-Fire regulations,
An establishment of steamer's and otiser vessels and boats of spaccial désign has been provided at each submarine mining station, its size being regulated by the strength and importance of the defences, and the facilities that may exist for reinforcing the establishthent by means of local vessels suited for the work.

The usthal establishment would consist of the following vedsels and boats, which would be required for ordinary peace operations, and for instructional work.

1 Submarine mining thooring stéamer.
1 Steam launch.
1 Lighter.
3 Junction-box boats (fither pintacess or bioats of special design).
2 Cutters.
3 Dinghies.
1 Gig, or whaleboat.
At som'e atations the establishment of 'boats is larger than this, and in most cases arrangements ate made for hiring local steamers in case of emergency. At'certain stations some of these hired vessels are taken eaoh year for shot't periods of trainin'g, so tblat the speciph fittings may be placed on board, and the masters, prews, and ment may, become familiar with their work. Tug steamers would also be hired 'when réquired, and also' larnches for despatch-boat work; these vessels would requite no prévipus sillération.

Submaripe minirig vesseds and 'bouts were formerly supptied and kept in repair by the Admiralty, but this work is now undertaken by the War Uffce. The Adurtralty, howerer, still repair vessels where practicable and make periodical frispections of

Artangement; for nupglyand repair of vessels. boilers ard machinery' on foreign stations; they also supply tugs free of cast'at IIome Ports when they can be spated.

The principal characteristics of 'the different tripe's of suthmarine mining steamers are given in Table A, und Plates I and II are illustrations of the latent types of "morring vessei" and "launch" approved for the Service.

Detailed drawings of the vessels supplied to each statiou should be kept at that station.
The mooring steamers in the Service vary considerably in size. The "Miner" class are 65 ft . by 15 ft ., and draw about 6 ft . of water, and the "Gordon" claqs aare 95, ft, by $17 \mathrm{ft} .6 \mathrm{inc}$, drawing about 8 ft . aft, these vessels'seng euployed in the more exposed ports; they were designed with special reference
(a) to mancerving poxwer,
(b) to eapability of carrying a cunsiderable uumber of mines at one time.
The manoeurring power in obtained by the adoption of Mr. White's "turn-about" principle of construction, which gives thess vessells remarkable steering powers' whell going either ahead or astern, \&ilthongll the vesiels are provided only with single serews: They are, moreaver; dxeeilent sea koate; bne of them seiled to China, and behaved extremely well in very rough weather durfing the vơyatge:

The large deck space, and qriangement of masts and derricks, render it possible to stow a large number, of mines, with their moorings and cables on deck, and to get them over the side for laying qut as required, The number of mines thus stowed will depead to some extent on the state of the weather and local circumatancees, far it will not be in all case advantageous to take a large number of mipes on board at the same time, even if the weather is fine enough to allow of its heing done in safety.

Trials in smooth water show that 20 E.C. mines can be embarked at the same time on board one of these vessels and afterwards laid out, the operations being performed easily in a working day of 8 hours, with, one, squad slipging and another laying out.
80 foot class.
"Miner" class.

In later designs the length has been reduced to 80 ft ., the beam varying from 17 ft . to 18 ft , and the "tupn-about" principle has been abandoned in favour of twin screws, which, while, they givet gugd mancauvring power, allow of locomotion in the event of one icrew getting foul or disabled. These ressels have good deck space, and are all provided with the means of slinging mines stowed on deck.

In some cases this is effected by means of steam cranes or derricke only, and in rigged vessels additionad facilities are afforded by means of masts and bopms, the falls being worked by the forward steain capstans.

These vessels cost much less than those of the "Gordon" type, The "Miaer". plass, of which there are 15 in the Service, were opiginally moprovided with means fou liftipg over the side mines or sinkers stowed on deck in tha after part of the vegsal." Séveral of these veessels have, howover, lately been altered considerably. The chart-house has been moved forward of the funnsl, where its roof and extensions form a bridge for the coxswain and officer in clajrge Two latge davit-derriche mave

[^1]bean provided, one forward and one aff, worked by worm and pimion gearing, and vertical capstins bave been substittited for the old steam winch. A "horn" has also beem substitnted for the old joggle, and some other minor alteratims effeoted:
lh all the foregoing vessels tocommodation is provided for officers and crew.

There are 1242 - ft . navid stean-launches in the Serrice, some of which were specially built for the work. These boats are nseful for many ldids of submarine miming opertitions, but their want of speed is a great drawback. They are capable of laying out and piokizg-up the lighter kinds of D.C. mizes with rapidity in smookh shallow water, if the store-ship is close to the minefield, They can atso lay out group-cables and junction-boxes, and have been used with advantage' as "mobile " junétion-box botis. These bonts, being only half-decked, cantnot be used inf rough water, bat ther capalilities in this respect for traysport work is greatly hereased liy fitting them with tartle-back awninge or hoods, one forward to protect the boiler and engines, and one aft to protect the passengers or stores in the stern sheets.

The latest desigu for a lamech (Phate' II) is a bost 48 feet long between perpendiculars, with an overhanging comter, 11 ft .2 in .* beam, and drawing 4 feet 6 irchessaft. These vessels are decked all over, the engines and boiler being protected by' a raised steel cosing. A good deck forvard of the engines is provided for laying-out ant pieking up mines and cables. A davit-derrick and two vertical steam capstans are fitted in the fore part of the versel. The boabs are diagonal built in two thicknésses of teak, the bulwarks (8 feet high) and rail being of steel.

There is a small cock-pitb and cabith aft.
These boats are fitted with twin-serews and surface-condensing compound engines, which are designied to give a speed of 9 knots. They ate dexigred to lay out and piok up E.C. mines in moderatibly dmooth water, and aty the same time to be used for transport and despatch work when required. It is intended that nearly all the miniug work should be who forward of the funnel.

There are some naval pinraces in the Service which are apeciekly fotted for use as junction-bex boats. They vary in length fitota 28 to 96 feet, and are fitted with jotrgle, derrick, and hand-crab, so that they contain the means for raising junction-bowes, and light. 㱜C. mines. These boate are very strongly built, and are most useful for landing the ends of main and shore end cable, for patting dorvit mooringes, and as diving boats. These boats, and also the 42 ft . pulling latmeches which are provided at some stations, call tary a few mimes, as "storeshipses" in maooth water.

- A-good number of specidaly built fumction-box boats have been provided for the Service. They are decked fore and aft, with a central wdil, over part of which cover is provided for opening'sind alasing the juration box, and for proteeting the creb atad telew phones from the weather. These boats have a joggle at each end, which ships in-board when not in ase.

Junction-bax boata,

Specinal junction-box boats.

Store lighturts

Specin!
fittin. k,
capotans and winches.

Da untmet

- lif.

Cleats are pravided for making fast oqbles. These boats are short and broad, and very hupysut, consequently sumo care is required in towing them at high speed. They are better adapted for work in onclosed waters than in the open sea. In deep water, and when the junctionnbox is heavyy it is well to raise the latter with the steamer's gear, and place the boat wader the box.
Most stations are provided. with at least one store lighter, and in time of emergency it would generally be very. easy to supplement them by hired Fepsala, sdmirably suited for the duties they wquld have to perform:
These store lighters are employed pa follows so Sevietal groups of mines are run down to the $[$ ine and shipped on board, the sinkers for thepge miges being geperally kept, stored in the bold. The persels can them be hauled, away from the pier so that the laying-out, skeamers can "eling" both from the pion and the lighter. If the conditions of weather and sea are favourable, the stone-shigs can be taken the the mine fields, where the mines can he rapidy transhipped to the, laying put vessels,

The big derrick and steam crab of the lighter are very efficient in rapidly trapsferring mineos to the, lafing-out vessels.

As these ressels are often-lying; hy fpr some time without use, the falls and guys of the derribks should be very qarefully attended to and tested, sa that they may not become rotten. It is well to rig' a "Burtan " tackle to the masthead of eaoh derrick for passing, weights down to any required position on deck, close to the foot of the mast,

The lifting, arrangements in submarine mining vessels are very varied in charactera The older veasels were proyiled with steam winches, which are now replaced by verticad fapstans. 'Lwo of these capstans are generalle pravided, one of them being fitted for takigg an expanding drum. for laying out aud underrunning shont lengths of cable. These dyupas are now beiag tried in the form of a removable frame 2 ft 6 , in in dipmeter ${ }^{*}$ which can be shipped at pleasure on one of the pappbanes

Vertical capstang allow of a hovizontal "lead" to a mope or chain im any direction and this gives the pawer of raising weights on the forwand and after; derricks of masted wesssels, and of applying ppwer to maker a direct" lift" oyer the guawalo on either side.

These capstans ape worker, by small antiliary engines, fixed to the puderside of the, depok," gelose ta them, aud apptrolled by. wvers placed in a couvenientoposition ron deok
Derricks.
Derricks axe usually in the form pf lagge davits dspable of being traversed by hand or steam power through a epaplete circles In the older boats the derricks were contralled by moans of guys. Davit derricks are now ibeing fittod in the ofter part of those vessels nat rigged with masts,

The masted yessels are proyided ;with boom derricks, which haye a, guod. sweep and: a liggh litit, These baqta ave consequently qate thas sing weights off piers and store ships with their own appliances, which is a great adfantage in, many ceses

[^2]The plder bopts are fitted with jogegles over the howe, containing two shemress eqch copable of tuating 4 in prope: Horn joggles, cogtaining une large poller about 8 in. wide and 6 in, diampter are now, provided in new yessels, so that conneoting boses aud sluokles may pass easily over them.
, Fair leads, with horizoutal and vertical rollésé, are, fitted on the rail or each bow for paying out and getting , in cables, \&o,

Iron cleats are fittof, all aloug the pulparks so that, mines and sinkers can be slung at any part of , the vessel. These cloats are capableq of taking 4 if rope.

Ripg, bolts are provided in suitable plaptis for attachipg snatch blocke through which fallo are given a, fair lepa to the capstans or wipiches.

It is convenient to " a glage top, for the protection of the mine feld ptan, alsp a box for the protection of binoculars and sextanths in rough or wet weathery

The steamere suitaller for submarine, mining work at any port fall naturally into thro alamsens
(1) Those anitable for most subpnarine mining operatipus

(2) Those required.only as tugs and despatch bapitos, and

Wessels of the firat, clase will peaidy alway ber skagle screw bodtas, generally deapar, and narrower, than oum fown vessels, fand sdithetimes pussessing mppsiderable power and speed. At spme poirts araall steanc. lighterrs aqe obtainable, and these vessels are generally provided with a steam wipgh, and derrick, the hoopm of which wonks sfit aver a lagge hatchwhy, that pengine and papilers beingr righth afti Such, wessels require, ipnly, i, iigggle, qnal aj few cleate to turn themi $8 t$, onse into very ugaful, hoots for gubmuripe mining purposes, as they can be used either for laying out mines,

 These weasele ganenally stow invell! enough far, sulomarine, mining purposes, and are provided with a forward wheel, and capmpmnça-,",
 If the bulwarks, stanchions, aud rail are of wgad, it will be easier
 tration of a form of cleat that has been found very suitable for such vessels. There should be a clear deck-space forward, and this can usually be obtained by removing any skylights or companion hatchways, and covering each opening with a low flat hatch. The windlase and bitts, if right forward must also be removed, but the paxwl-bitit may be found of use as a support for a derrick mast or devit to work over the joggle. If the vessel has a foremast, a derviek boom, working forward, may be found more useful, and easier fitted than a davit-derrick.*

[^3]The strength of the deck and ratil shoduld be neect to; the former may be strutted up from the 'keelsont, ant 'extra etahthions may be required for the proper support of the rail when Tieaty wives are slung. A clear gaugway of at least 3 ft .0 in . is desirable between the bulwarks and the casings over engtites and boiler: This will allow of mines being drat'ged from aft'into posfition for slinging on either bow. For thisk jurpose rope mats abbout 2 ft .6 in . equare have been fouth very useful.
Cleate.

Joggle.
Iron cleats, unless pretlously prowhed for use, take some time to make, and, require a good deal of timel to fit properly, Whiere wooden stanchions.exist, it is better to fix cled ts as shown in Plate III, fig.4. Where the bulwatks are of fron, wóden stanchions may be fitted between rail and covering board, to which cleato and catels can be attached. The stanctions thay be' recessed as in fig. 2 , to form the thumb cleat, the cavel betrg ditached in a countersink slot abóve.
The joggle may be formed out of an old dsvit, the head bettg opened out to take the rolier shes ve. "Eaty, projecting above and fortwrid of the sheate, should foratided tonkopicables and chains from slipping off the latter wher a side strain comes an theth. Very goot worki ten loe done with fair loadts tixed on leach bow, no joggle being used till uccotant of tisetaped sphace forward, fofestay, se.

Derrick.

Steam wineh.

There slowtal'be ne dificulfy in finctiont statable derrick, and fitting it up of board. Nost large oteamers are nitull y y itued weith haudy little 'dernicks' for shipping' their anchots, twhich wanld andwer very well for snlinaitipe maining purposes, In! Plawe III is gfvert an illustratiots of' the fatmert in which an ald 't miner's "\$ derrick has been fitted to a hipted briat:
 feet aft of the dettick. The stibaim 'comection with the boider,
 corvitiog.

Mach tinte win be saveit on an emergeacty tif all these fituingol are 'placed 'on boarti in poace time, blthough they ape remowed when' the vestel th not in thise. It has been fownd that vessels which' trave been so fittét coin be trepateẩ hay 'sorvlea agaiar in about 10 Hodute.

Givery station should have somib spobial flathass nearily for attacipnient on an emergericy.
 marrine utititing.

Fig. 3.

 $\$ 9$ more launehes are under conetruction in whioh the beam is increased to 12 ft : draft $4 \mathrm{ft}, 3 \mathrm{in}$,

CTrews off Submanine-migning Fesselg,

The personnal of a submarite-miuing stagmer consists of the " militaty mechanist" cosswain, the deck-handids and the engineroop staff.

Military mechanist coxswaine.

Mooring stermers.

Thr tike impoitant duty of taleng charge of anich handling, the larger natures of moor i g-steamers, a-specisictass of seamen has. been onlisted. These nee ars entrusted witle very important and nesponsible duties which are set forthe in greater detail under the heading of "Duties of Grews of Moor ing-siteancers." The following pumbers strould s, enemally suffice for the effacient working of the arger steamers under normel conditioris =

When work in: the mine-field is going on, it is dessirable to 部ip, another engiue-driver in those vessels fitted with steam cranes,
 them and the capstans;

It is ale desirable, under these cincumstances to provide a dinchy crew of two men, iu ouder that the déctobands may not be then a way from theif proper ditiess: These extra men should daseist the deck-hands when not required for the boit, and should be capable of takzug their places on an emergency.

- The crook should be capable of giving assistance on deckizowen เซ̄̆uired:
 snut in the eagine-room, it is generally necessary to increase the numbers of deck-hends and stekers.
Hired veseelš
"Wheñ hirèd stēamers are employed for submarine-mining wiork, the civilian crews shauld, if possible, be engaged also, The orews of such vessels of 80 or 100 toms displacement uspally comsist of a master, mate and boy son deck, and one anginedriver कund one stoker below. When employed in the mine-field, it may often be desirahle to supplement these crews, e.g. . by placing on foard a dughy crew, of an extro engine-roont hand to -assist in working the steam-cralio
Launches.
The normal crew for a twin-screw steam launch is :-

Then the steam lifting app innces are in use, and long hours are peing worked, another engine-driver may be sent on beiaid, and it may be desirsble to have a seoond deck-hand under these circhmetances. WWere the woipk tif light, the duties of the deckhand can be-performed by the roxsw ain and atoker.

These vestefly，whith tway fer nsed eithert in the mine－field or as Lighters．
 4．groind of C ：

INT．O：thi charge：

2 xden beeld wh wheth ktukers and mines are＇strotwed in holla！＂
1 difinte－drivent
1 stokewh（14）\＆

Draties of Creas pf，Suluminernizipg Tebsels．

 the office in charge of the submarine－mining defences of the port for the safety，efficiency and cleadiness of the vessels ，＂oats and stores placed in his charge．＂He ig not responsible for the state of the engines and engine－room，but whe ofders for getting ，pp steam，executing repairs to engines and Doilers，and reports con－ nected with their condition wili pasp through him，in order，that he may be duly acquainted with everything foncerning the的fiency of his óharge
（3）He will draw，and a ccount tot all consumpherstores uaiod on or，about，his vessel，with the excepption of those requ，teg for the engine－room departmient．

The oil used in all lamps on board is to be rape seed（colza）． Paraffin oil is uot to be employed．
properly，and should dipect the attention or his urew w we circumstarces of the collision as corroborative evidence．Shopdd his pessel be so injured as to be in danger of sinking he will make every effort to kopp her，afloaty or to beach her if necessary．
（5）He will see that proper discipline is maintgined on board his verselj，apd that，the ，prders ipsued，for the purpose are quly obeged，A \bar{y} ，breach of 中hese orders should be reported imme－ diately to the officer in charge．
（6）He will see that the vessel is washed down every morning and the britges pumped out．The latter shbutd be openied up and cleaned at leasti once almonthi
（7）．He will seq日 that，fhe brass work is kept clean and hright， and that any paint rubbed off ig renewed as ppportunity offarg
（8）He will see，thap the gapips，chart room，and men＇s quupters are clean and tidy，and，wih，allow none but officers to use the former．
（9）He shouild remain＿on the bridge while mavigating narmaw chanhels and anchorages，and when going alongside vessels or piers．
（10）IFe will take every opportunity of instracting the deck－ buds in their duties；in steering and managing the vessel under steam，in the rules of the road at sea，\＆cc．，so that they may be able to take charge of the vessel in an emeprgency，or as a relief．
（11）He will frequently inspect and test alle anning gear and

Military

 mechanist coxswains．
 se groint of ?

Tinv.0: hi charge.
7 metr on deek to trark guys, buritons, hook' ropes, and falls
2 tikn tieldit whetr sinkers and mines are stowed in holle. irt
1 eftgirí-drivedely
1 stokert? (si) (f.ive

Duties of Cirews of, sfumaming-nuiving Kespals.

(1) Thé mithtary méechanist cozswan will be héld respquisiple to Militory the officer in charge of the submarine-mining detences, of the meohnist port for the safety, efficiency- and cleadiliness of the vessels, boats coxswains. and stores placed in his charge. He is' not responsible for the state of the engines and, en gine ropnr; but the orders for getting up steain, executing repars to pnomes and boilers, qnd rpports conneted with their cordition will pass through him, ini, order that he may be duly aequainded with everything foncernipg; the effeciency of his eqarge.
(2) He wil draw and account fot all consumable istores vied on or about, his vessil, with the oxception of those requine for the engine-room department.
(3) He will sea that alt yessels, and höats in his chärge Eire properly moored or secured, and that tiding and other lighits are properly trimmed, lit, and fixed, when required.
(4) In the event of any vessel coming into collision with a vessel under his charge, he will, if pagsible, ohtain the name and port bly such vessel, and also that of her owner; fo the collision occurs after dark he will ascertain that his lights are burning properly, and should dixect the attention of his crew to the circumstances of the collision as corroborative evidence. Should his pessel be so injured as to be in danger, of sinkring he will make every effort, ta koap herr gificaty or to, bepch her if necessary.
(5) He will see that proper discipline is maintained on, hopard his vegsel $\mathrm{l}_{\text {is }}$ and that the orders issued for the purpose are ir duly obsyed Any breagh of these orders should be reported immediately to the officer in charge.
(6) He will see that the vessel is washed down every morning and the brilges pumped outt. 'the latter sthould be opened u'p and cleaned at leasti once a'mbnthi.
(7) He will see that thee brass work is kept clean and hright, and, that, any paint rubbed off is renewed as peportunity offerbs
(8) He, will see that thye gahips, chart room, and men's quarters are clean and tidy, and win allow none but officers to use the formyer.
(9) He should remain on the bridge while navigating norryw chunnels and anchorages, and when going alongside vessels or piers.
(10) Ffe will take every opportunity of instrncting the deckhads in their dutigs, in steering and managing the vessel under sfeam, in the rules of the road at sea, \&c., so that they may be able to take rhatge of the vesset in an emergency, or as a relief.
(ii) He wiil frequently tirspect' and teet alle unning gear and

(12) Should the miner under his charge be awes, frame hearmoorings any night, he will see that she is zacunel $\frac{1}{2}$ anconved in

 secured, and the riding lights properly displayed. When away from moorings one of the crew is to be always on deckinaeping watch.
(13) If under weigigh -after dark, he will see then the proper lights are displayed and burning brightly, viz. : On a staff at the forepart of the vessel, a height above the hull of not Toss than 12 feet, a "bright White light she shooing through 10 points of the compass on' each side of the manet's Wow ; on the starboard side a "green light," showing through 10 paints of the compass from right ahead to 2 points abaft the beans; an the port side a similar "red light." If towing, a second white light, 4 feet above and similar to the first above-mentioned white light to be hoisted.
(ii') He will send in daily, by " 9 ' am. a report, "on the form given below (Form Y), to the Division Officer submarine Mining, R.E. in Which any failure to con dy wi th these orders will be recorded, and the reason giver Me will also mention in this report anything of a special natorfe that has Happened during: the post 24 hours, affective the vessels under his charge.

 Julien Steamer

 my" charge were complied" with "Gurititg' that plist'24 homes, except as reported below. int

 am. and were then*

All lights and fires were extinguished at \qquad p. ax.

The fire regulations were' strictly cobinplied with. The "r ire Stations" .were last' practised on the H, Dat The decks were Washed dow th and the veliselse foinfroed dry by am, The thennounder my charge were all present and correct.

Special report of any deviation from regulations, or occurrence

\qquad
N.-C. Officer in' charge.

Particular care must be exercised in steaming through minefields, so as to avoid submerged mines and buoys. Submarine mining vessels, when pacing throzent then balfspeed, unless there argent reasons to the greater th
contrary.
give each man some special 'charge, e.g., to one man charge of

 another the cleaning ont of cabin and chart-room, \&c.

The men should also be given defmitie stations, when mulder way, one being stationed aft to look after bots ins, tow, to weep ropes, cables, and buoys out of the propellers, and to tendrthe utermuast, sad fender. The band forward tend bownfast and
 and sees that all gear required for work is nastily for 1 use at betalso washes away mudiand dirt before it get trampled into the deck. He should have supply of clean sand noway to saar, the decks when necessary.
"tivNotld-Afitay a heavy day's subanarineminimg whorls, the 9\&quadd ribourdep [assist to wash down and tidy the véasel before going ashore.]
if THy deck-hamds shook take prince with the appearance of their

 should ale beyeady to ingatuget men umderninbtruction, by practical rallustration as"to' the proper" way, to heave throw-inines, -belay ropes, to make knots and faitichdef sc. They bhouleunh like manner take every opportunity of learning how to steer and
 rules of the road at sea, the pilotage of the pert and the appear-

When there is a hand on boavithor cooking he should he made responsible for the cleanliness of the men's quartersfand messkit, the eloginginf paris whequ under way, and he should be ready ta gixe assistangeron dep ty when required.

Therspocial ditties os the enpineroom, staff are laid down in Engine-roont "Regulations and Instructions relating to them Machinery and stat. Boilers of Submarine-mining Vessels" The prome-driver in ohlarpige of, a vessel's, machinery should draw and account for the
 the coxswain in charge of the vessel THe, driving of steam capstans and derricks should, when possible, beni, done lo the engine-room staff.

 must be retumed to their proper berths when not in use, and not left lying about the decks, Each mai should make up his awn hammock or bunk, and stow away lis clothes in big locker:
Atrleach station, standing orders, based qu the fores ping instructions, should be placed on a tort in foch spabpapinemining vessel, together with any other extracts from local orders General. and regulations, which may affect the proper working of lie vessel.

The deek-hantios are, unden the coxswain, responsible for the Deck-hands. cleanliness and tidingse of the peatels and foft the performance of all work on deck.

It is well to detat the sieveral hards for spectain drathesis and to give each man some special charge, e.g. to one man charge of

 arnother the cleaning out of cabin and chart-room, \&c.

The men should also be given detinite atations wheh mader way, one being stationed aft to look after bpats in tow, tordeep ropes, cables, and buoys out of the propellers, and to teadrthe

 and sees that all gear required for work isiready for nse siliketaiso washes awny muditamdi dirt hefone it-gets, trampled intar the dheck. He shobldi hsve qupply of clean sand neady to sanid the decks when necessary.
 siquadd shouldyassikt to wesh down and tidy the vensel before going ashore.]
it TrYe debk-hands shbuld take a pride inathe sppearance of their

 ropes, to make knots and haitroheld, \&eer Fhay should in like manner take every opportunity of learning how to steer and mancuvre the vessely hididerlsteram, howrtw-heme the lead, the rules of the road at sea, the pilotage of, the port, and the appegnance of boys leading mor mon mand heacons.

When there is a hand on boadid for cooking he shoild be made responsible for the cleanliness of the men's quarters and messhit, the elqsingeraf porks mhen under way and he should, be qiqady to give Rssistance pn, depply when, required.

Whoragecial dutieforf the engimerroom staff are laid down in "Regulationis and Instructions relating to the Machinery and Boilers of Submarine-mining Vessels", The encine-driyer, in Ghang of a veassel'm machinery should draw, and moqgunt for the shares , felluiped for his work. He should make allifeports through the conawain tiay cheqge inf the Fessel. The " dripwag of steam capstans and derricks should, when possible, , he 1 done by, the engine-room staff.

To maintaiff olgapliperat and kidipesar in a vessel it is assepnitial that thera shoulf bai n place for every thing , and that eyerything
 mulet ber fotrusined ta, their, proper berths when not in use, and not leffreing about the deplis, maph man, should, maka Lifis, own hammock or bunk, and stow away his clothes in his Jockerit

At eagh station, standing porders, hased on the forcisping
 mining vegsel, together with any other extracts from local orders estistztione and reggulatianis, which may affect the propel working of the

Engine-roour stati.

General.
"position-finder."-Rules for use of instrument.Accuracy and speed of method.-Mine aligmments.Laying mines or buoys by this method.
(v.) Fixiag unknown positions by two or move Sextant Angles and Station Pointer:-Method not applicable to finding pre-determined positions,-Use in special canas,--Double sextant.-Method of plotting position. - Station pointer. - (For errors see Appenfix li).-Conditions necessary for accurate work - weveral points should be chosen for obserfation to employ with these conditions.
 line.-Marks on line.-Another method,--Sounding rods.-Sounding is swift currents.-Sounding book. Tide gauge.

 Thais ctupter deals with, the tartails of plaps and charts connected with submarima mine deffengeg npodisf whe Whatigus meethods which are usually emadogedi in coaxying ond the simpreys, and in

General acheme of delence.

General plan of defence or small scale.
-1 Whe submemine inine defenees of a partulaving to be itondadered mide desigud in comperlion' with the vartillerentand floating atencecst4e is recessary, before the detrils nof the former are drathan out, to treat' the defeace as a whoto 'from aytactich point Bf view, remidithoritig the many edomsideratione ramected with the traffic of the port, the chavacter of the attack te beaporovided a gaiust, and the means available, both in matériel and personnel.

 defurice by ith ifms, both byllanbe atid water, nis vetailed further btifor A elitart.
This plan, which will be generallyy breuared an the frest instance at the War Office, aftei cotisulitation' with the kedmiralty, will be
 Hether Officer Oothmitudiag, whit wall cinteider what elterations are desirable, from a local point of wiew ihe the getient arrange-

 should be'constitéd:

After a careful study of the proposed defende, any alterations Corsideted desitathe jhffl beil submitted, with full explangtions of the reasoide fót sucis altetrdients, bud, wheh the play is finally spproted; the thitatl sux weyi work comneteth thith therrsubmarine mine defence may be commenced. Alterations in the disposition Ef the mittes wil asually ke comfined ta those due to smail

Plang qual : वkratin

 following plans inhoulat ly genevally fhidyphequaged for teidy purts

 officers commanding then defentea and vather ulbranchas of the
 mines. bitt itzenuat give and I information inequined for theipropper tactical fromking of thee deferree unden oner hhradl These yolans should therefore कhionw + !
 and visual signalling arrangements ;
(21.) Amentintise of vatious dutteries;itwith limitatione fire

(3.) Arrangement of search-lights and fixed beams 4 ' those
 tinguished faven those used ptricely for themine didfence.

The foregaing, information nkoy fréquentedy he rezovded on ithe Admiralty charts, but if this obmnot libe thompy the plans-mulst give all the hydrograppical details necessary. Transcripts of portions of these plaiks, when firality approved', should "de prepated for the
 the deferice, but a wifer discietion should be orfiruised, so that, while the intelligent action of subbrdindte conmanders must not

Bu-HPlan of each minenfieldy givimig the mecuatate position of

 gons, elevifric lighrt emplacements and engitie' houses, sraderground electric cable channels of all sonte, earisking nubmarine
 set and reloeity of tides, suc.

This pulan will not be used fior charting the positiman of mipes, chalas, and alignmentay, which are liable to cansiderable modifications froun timeltautinde, lbat will be keph as an necbrd of the existing state of the mine-field and its surroundings. Frdmanthis plan, which may be of an undwieldy stae for boutralown work, fracisge or reopiex of pontions oan be nade abrturder.
O.-Plans of each mine-field, copied or traded fimm B, will be
 junction-boas iand cable, as laid down in the authorised 'plan of , iefence. The depth of water (1 M.H.W.Bit) st poadh miute with be fhown on these plans; also the position bof. leading marke, hruoys for friendly chamnedj obstrmetions and betat niness mooriage for gmard-batik, anad all the details cobneoted with the submatine
(1014
A Pinn,

[^4]\qquad -4
\qquad E . .
\qquad

\qquad

\qquad

[^5] -

\square
\qquad t

B
B Plan, sacie 5hin recon of existing state of defence area.

C Plan.

 Details of submarinemining defences.mine defence．It is convenient to record on these plans the actual form and colonriang of alignment poles，and all cross inter－ sectioniz，mextant inglen，Grlabitual measurements necossany for the rapid buoying of findidg of charbed positions：

D Plan，for use in laying－ out vebsels．

E Diagrams．

F Alignment marke．
G Friendly channol．

D．Iranscripts of adequate portions of C should be preparred for use in the minhonfeld．Tliese chames should contaits all the ixfor－ mation requived for laying otat mikes，junction－bbsee，\＆ocs；they dray be drawn on waterphoof paper，ar in such a way that they may stand nongh usage and wat weather．
E－Diagramas，for use in juaction－box bolats，should bo prepernet， showing tho distrilation of the cables and copes．These may be conveniently drawn on waterpurof papet，accomplete set being provided for each junction－box boat，and laying－out stebarier：

F－Diagmams of alieyment marks on shore for the use fof the alignment party．
Gu－A plati of thor friendly ohamel，on a large scalle，should be prepared，giving the leadingmarks and the details formooring the channel buoyesil

Diagranos da allarge soale shouhd also be drawn outelyshowing the dipposituon of the cables where they enter the seam

The detaild in D_{f} 必，and F ，may be recorded ina note－books， made of waterpioof paper if necessarys Whaterproof ink for use with these booksican be madelfrom the following reuipe：shellac 2 ors．，borax 1 oza，nvater 18 ors－4 boil tragether，and wdd anliline dye（Judsor＇s）as required，for volour．

> Preparation af İarge Scale PAans of Mine-fields.

The general bicheme of defence sind arcangement of mines llaving been finally detenmined，the preparation of the large scale plant B and 0 will be at once proceeded with．

Scales．

The scales on which these plans are drawn will vary at different stations．If the plans are entarged from 6 －ineh maprs，a．scate of立就斿 or 12 inelhes to a mile，is foonvenient．If 2 ă－inch maps （51000）ane availabler this acale int one of roन may be more converiant．If the position－findef is aseid，a，scale of $\frac{1}{3}$ है 0 must bee used for the fring table，althengh a plan on e ebaile of soto muy be used with this instrument for surveyl purposes ifithe altitude is over 200 feets

Where plansi on these scadeb do＇not exist；it will be meneristary to prepare then by one of the following methods：－
（1．）Actuail ourcey from a carefully meakured iase limes
（2）Thiaggulation frota existing triangulation ofations，the risduced horizantal distance between them having been ascer－ tained，
（at）By weference to redords of iorigimal suryey；
（b．）By canoful，measurement from the largest soalesi plan obtninable．
The frest method，if unavoidably nocessary，must be carried ont as cakefthlly as possible，in avorirdarce with the wellnknonpn rulas governing suchioparatious，Measuringtapes and chains must be olaecked，and a standard ref：length laid dawn．It will，however， geresally be poseible to work from paints by the second methot．

If it is not possible to obtain the reduced dustances between

Artificial alignment marks.

Alignment marks on steep slopes.

ARTIFICIAL ALIGNMENT MARKS.
these points from priginal records, measunement fram, existing plans may be resorted to, prowided fhe probable error does not exceed 1 in 500. To ensure the greatest possible spount of accuracy by this methge, the plan should, be on the largest, scale obtaiquble, the station about 2,000 , yards apart and the scale engraved on the plan used for measurement.
:In many cases goad plans, $\begin{gathered}\text { repepared by Laceal Harbour Trusts, Local survess }\end{gathered}$ or similar bodies, will be found to exist, and evvery effort should be madap to obtain them for reference, If not for use.

The preparatiop of the plau B will in most cases, be, a matter of campilption; recording pn one large scale drawing the informen tion contained, in existing plans of different scales. It is of great importance that such a chart, containing a recort of the actual/ state of the defence arear and of all, the permanent, dofence works, on the same scale as the detgiled aubmaripe mine charts, should exist. The position of lacal triangulatign staticins shppld be recarded on this plan, but submarine mining alignment mark ks, which are liable to alteration, need only he shown on the submarine-mining charts.
In selecting the stations for the, triangulation, itimmay bej necessary to ipplude more ground than, is actually, requiped, for than subpmarine maining chart alone, in order to fix, properly the deferse works required for plau B. Some of the statigns should, if possible, be ou or near some of the principal, aligmments for minés.
It is desirable to take angles to distant wellidefined objects beyond the limits of the plan. These bearings, or their prolongations, when laid down thereon, will often give yalua,kle alignments und cross intersections, with, existing alignments, and save a good deal of time and noaterial in putting up pqles.

Alignmants are pf three dpscriptiong :-
Preparation of plan B.

Trisagulatiou stations. -
\square
\qquad
\qquad
\qquad

Alignments.
(1.) Natural and permanent;
(2.) Artificial;
(3.) Combination of (1) and (2)

In most places, pleity of permanent copnspicuous objects will he toum which will either give suitable, allignments hay themHo wes or can be used in conjunction, with artificial, mariks to give alignments or cross intersectipga
Plate IV illqatratas the ugé tiat pay be made pf permanent and artificiáal marke in arrangug aliguments- o Pwo existing objects, a flagstaff and a beacon, are felected as suitable and convenient marks for determining the dirpption of aue maiy alignment; a single aritifial mark, No. 1 completes it. , the alignmenta $2-3$, and $4-1-6-7$ are set on by actual measurement from flagstaffe,
The positions of the Marks ${ }^{3}, 4,{ }_{2}, 5,6$, may, be capable of, adjustupept alopg thespo fignments, so that they may fulfil a donble purpose; thue the flagstafi, and siva cross kearing for the MD, J,B., \mathcal{L}, Simithry, the alignments, fiagstaff Black Bools beacpn, 6 , marh the position of, the M, J.B. II.

The alignments passing thrqugh the marlis $8,9,10$, are not parallel. This is due to the selection of a conspicuous distant object as a back mark common to the three aligrments. In this
illustrdtion, the matk 9 is alligred between the offinne's' and the cain, and the positious of 8 and 10 are easily found liy actuat measifyemett from 9!
By thrs means, one perthatient back mark is made to fulini tied offlce of threte grtfferial marks', with \& consequient sswing of material and gain in acciuracy.

Brab, or distance between mbikg.

Permanent mark.

Requirementé of alignment marks.

Forms of marks (see Plates V, VI).
"THe, batbe, or distance 'between' alignment' markk, shetold, if possible, be at least one-eighthe to orle-itentin the disthnce the the furthest mine: When a distank Back ndark is selected, the buse whl 'PFequentiy exceed the' distanice' to' the furthest 'mothes, but in misty br thick weather the bade thark nay be intisible, in which catse tomporary back marks may be fequired. The posirtions of these should' be marked, so that they may be erleted without any" delay. "The probable erront tutue to short biabe ate allinded to under the heading, "Buoyitig. Positions in the Mfres-fietd.".

Potmiadent marks, such as catiok, leading matks, datum piles,
 matks. "THey are aiwáys' standing', do mot show the pókfition 'of mipes to strangers, and, as they are generally 'fixed ly' triangatha tion, exisure very deturate whit,
"The tate requisite of allitument marks is vistbility under all ordathary conditibns of worli, the eecond, that they should be' so placed as to give accurate restilts. The warks, therelote, should be of considertible site, thu of such form athd dolotiting ds to be visihle from the most distant part of the alignment ufider working contaitiond of lithtand backgrouid

The following lobmf thay be thed uridet different citcunat stänco ${ }^{\circ}$:-
(d) Pbles, with of without flags or ofrins.
(b) Planks.
(c) Planks at right anglies to each other.
(d) Triangles or half pyratrids of titheter Dir, timber and canras.
(e) Cairns of stones, whitewosthed.
(1) (e) Eishtt' and snoke.
(a) Poles of dafterent colours to suit the background are fréquently used tor short distances. Intesé poles may bey fitted with arms, discs, triahgles, Hags or other devices for tendering them visithe. If flag's are used it is welt to maxde, them in the form of batners, afoft'six feet scyare. Ir"calm weathex the banner thanys dbwn atd difaplats its full arta, and if there is " breeze, serves; by its finttering motibit, to denate very detbiently, the position of the pole carrying t t.
(b) Planks present a much larger area to yiew than poles, foit the kisme weight, "and are cherw anid effective matks.
(c ahd "d' Lightéplamks at right anglès to eket wther, in the form of a V-shaped tiougign, make excellent mankg Tithe dimensions of the trough can be raried according to the sutroundints. In some places the " trought ${ }^{13}$ mark wrill be high and nartow, it ${ }^{\text {l }}$ others low and brdat: The Iatter form cant bo ntade very light,' so that it can be folded flat and basily traridported. As one side of the mark is

 visible. If the sutilis hikely to be vertieally ower; or a little bethind, que matk, it can' be" slopted 'back' if the planes
 semípypanmidal form of timulter' and eanvas. The priniciple of construetiong itarks in the form of a sedivd, the planes of whichr' etith 'be illumindted to differentl dedreess, is capable of manyy verfiations!. Thers; where high pules, Er
 the erection of an ordinary bell tent round the foot of eaboh polewdulal probably render the marks disforgilishable when theys whitlef otherwise be thvistble!
 marks for similar reasons.
(f) Lights and smoke may be used for alignment marks. Old paint tins, filkad with juank rgand prituh, waw be used for the latter pappose, the ting heing guspended, from the pples or marks, The, datum marks, far the position-finclers, maJ, often bey uspl a alignment, marks,. When, specially spectod they shpulf, be sloper sideways, few degzees from the vantical; this getsiovien the diffigulty of estimating the troe water-line in (, dentu cralm, when the park is peqlectsd in the water.
The solouripg, of, manks in mapuly, is, qMestion, of light and Oolouring of
 where the backpround is a whith cliff. As Arginst onsky line black
 desicuble to hare them paipted white qn phes, sude and black on the other, so that they can be reveraed if Meqessary. As an pule white is the bost calourr for general $\mu \mathrm{m}_{4}$.

 alignment marks visible under all workiug g_{i} بoдpditions, apad, with thif abject, the mandkg should he kept.in , gropd reapiry and well painted, it
 eqah ot, ber, whon viewged fran all ports, of the glignment, it is evident thene that wheme the shores are, stpep, tham marks must oftenibenf ponsicierahla haight, and. it many samefimes be necessary to erect three, or more, to ensure hair gomeripis exch other, asad to kech tham; within, reapomable limits of hejgith

Aligmment marks should be easily identifind fram the water, Identifection and should correspond in form and colouring with the sketches of marks.
 cross-bars at different angles with the heritwhe when there is any danger of confusion. those on the front pales belung dodally placed larif wa, up, and those on the back poles wet lhe top. Dises are oftct used to distinguish ghthetion + bdx alightriendes:

Marks nsed for eexthat ebserwation should-be as low down as undue tilting of the instrument.

Arrangement of marks (Plate V).

Permsnent footings for marke (Plate VI).

Record of marks.

Buoying mine-field.

The paritiond of aurvey sad aligament mauks ahould he permamently mardred on the gromind. A conreaient mothod, which provides at the same time a socket for tha pale ar mark when up, is to sink a 6 -in ipipa A ft lons in thenground, bodding it in conqrete sad covering it with a flat stone* beaning the requisite ingeription. The irom socket, pipes imay be dispensed with, by using' a slighthy. tapesed wonden, core wout 4 fft , loug, round which the conarete socket is, farmed; the pere is provided with a handle for turning it rownd and withdrawiug it. A, hole should be hored down the gentren of the eqper siothat it may be ghambed tuply vertisal.
A Al list of all marise should be preparad, and they should be periodically inspected (not less than once a quarter), and any defeots made geled. This list should ba kapt with the sppruarine mining records.

The inain strvey Hiavitht been' contpleted, as described in the foreboing pages, it may be necessary to ondertake a' regular hydrographical survery of the mine-fields atid adjacent waters. In this calsë special antangerenents will havei to be made for takitg the soun'dings, eithet "Wy" working' along alighments; taking simitanebus thedodite olbservations from three of more stations as each sounding is taken; working by actual theasuremetbt froin buoys actudrately tioóred by three of four aticherts; by medis' of the position-imidet', 'bt by means of abuble sexterit-
 tion the position "fe" la fex" buioys laid 'by any of tab varidus methods abotrt to "be' 'destribed,' so 'that no loubt may 'exist as to the 'accuracy of that emplored.:

 delfintely'dectded' on:
 very inaccurate ip another. It may often happen that each matir'
 and, in ribst bases, it will bel adivistble to cheokt the tesulth obthinea;', by frequently laying ont tite tsathe budys and chartilig
 three or more azimuth instruthents.
Methods in generaid ase.

The following methodk for Bndying or findingis potitiond it tide mine-field arg gerreraily employed:-

1. Croas inforaction of tyor alisuments
2. One alignment anndiaextant prosle
3. Aotual mimasunements
4. Position-finder and roue palisgment
5. Combinatioms of, the abarge.

[^6]
$$
\text { Example, Fig. } 2 .
$$

Marts 1000 yurts from .0. 200 Al apart.
Angle of intersection 25°.
Assumed error in alignment of centres of masts 2 fl .(ride up of errors in Survey, erection' of marie, and in Minefield) Maximuore error in laying $x y^{\prime}=140^{\prime}$ '

Scale ई50.

Plate IV. illustratas the method of fondiny phaitiops, by meaus of the intersections of alignpundtas Where the, positions are dispossed in sevprid royye more or less parallel, the iutersection of one cross-allgament may ofteln be rtanged to fank a nagition is each rows. It is well to avoid the riultipticathan aispment marks a much as pasithle. This may frequently be arranced for when the mine positions are being planned art. Where it is nepessary to provide for a copscderable nu'mber "o crossonligm ents to give the necessary intersections, a badk" of froout mafl common to each such atigumaent may often" W 6
 cross-intersection, may be marked, "wheres', the histante to to tile mine-field is not lop preat, by pickets, att which bardderols, H other suitable maxks, are held up when a mane or frot the beivig laid, The posifiopas ff these pickets, may be tive bus, theodolite or ghane-tapte, preferably by the former.

When a plane-table is used for this purpose, t triay be set Yp at any conyenient place, its posithou bejog fonta ey interpolation from oth mo tive points.

 piraumstancees.
The angle at which the aligiments cross theh other shoud Hot be less than 30°, undess the distances ant rery smatl (under 500 yards) and the distance between poles at least oude-eishty of
 Hons for the nse of cross raliguments, and show what arge, etrbrs may arise in pridinaty practice by using the method under thetde courtitansi

 of distance xina

Syppase that, in laying: out the centres of the minlks a' a and Ho are not exactly, ali pned but are pach wo Peet out lat opposite
 mpirks un steeply falling, grouye, added to smatr tradcuraciés of

 might be laid at y or y^{\prime}, or about 140 ft, eront the the po positions

If an error of oiny 1 ft . in aligning the poos " were, "hade the error in position wpuld be half of this amount.

If the gnate of infersection of the alignments in thid bxandole
 errors id illignment of 2 ft. and 1 ft , respent vely "thit example shows the nepesity of checking raitu dptained by this wettod by independent observations.

(a) Shortnes of base
$\frac{(1.84)!}{1}$

See Plste V.

Angle of intersection of aligumenta.
Th
(b) Slight inaccuracies in setting out the alignments.
(c) Small inaccuracies in working in the mivelfield
(v) Small anestly of interkection, which are wisurlly binaileat at thé most distant mines.
These sources of inaccuracy may frequently be cadivative, and lead to had results in practice.

When marking buops or mines are being laid ott liy thits method, the marks for individíal, mines or broys are erected, as required, by siguals from the layingoutit steamer to an alignment parfy on shore. This savè the expense and confusion which yould arise from having a permanent mark for bach mime ; it introduces, however, source of error and delay in practical pyorks as mistakes may be made, botth in reading the signals and in erecting the mark on the proper spot, and the officer in the laying-out vesset, is to a great extent, dependent on others for the speed and accuracy of bis work.

When there is rach work going on, and two or three steametrs are in the mine-field, great care must be taken to obtiate confusion and mistakes by the alimment party:

In à large mne-field, two or three sédondary alignment stations would be required for this purpose, as well as to fulfil the conditions of accurate work already indicated.

The cross vudersection thetion may be vory advautagoously usef for fixing a few important positions in a तlistant mine-field, from whish other positions cas be found by the method af acthal measurement For this purpose long basee and good insersections (from 50° to 130°) are desirable.

The thaprtance of exercising groat cara in erecting alignment morks and in checking their direction, can liardly be usisted on too strongly. It is therefore desirable, when the marks are erected, to independently survey the alignments, prolonging them to the qpposite shore when practicable, and to compase the resulta so obtainea with the alignments as originaily lafd down on the chart, hefore the marks were put up.

(ii.) One Alignment and a Sextant Angle:

This methed of finding the position of a bhoy or mine is very convenient. It is capable of givit'g great accuracy if properly applied. A consideration of the diagrams in Plates VIff, IX, X, and af the following remarks, willshow the conditions necessary $i d r$ getting accurate, resitts. Whete the metiod is relied on for find ing pesitions in a mine-field individual cases should be worked ont in the office to see whether the conditions referred to ane fulfiled.

Therequised positions,,y (fidsti, $, 4,4,4$, dc.) on any alighment
 tended, by the marks p $a_{1} p r$, cirfespont with their previously determined, values. The sextatt is set to read these angles, and the observer moves allong the wignment until the two nurks gome together in the horizon glass.

Similarly, the posifiloft of that observer at any mionent on a given alignment can be ascertained by reading the subtented angle, and plotting the position afterwatery on a plad.

One alignment and Sextant Angle.

Fig. 1.

Fig. 2.

Fig. 3.

To get accurate resultas it is evident:T
(1.) That the alignment should out the segnient of the circle containitig the aidgle as armelly as possible.
(2.) That the observer should be accurately on the plotted aligument at the moment of intersection with the eegment especislly when the angle of intersection is oblique, and the circle is large. (See fig. 1.)
(8.) That the angular vailistion sheuld be raptia.
(4.) That the marks $p,{ }^{\prime} d, b, r$, shculd correspond accurabery with their pletted positions on plan, and that they should be wisible, and suitable for sextamt observation.
(5.) Theat there should be no doubt about the value of the migles, ϕ, ϕ^{\prime}.
With regard to the lat complition, it will be seen froma figes. , 1 , 2, and 4, that the marke p, q, shquild, be fairly equidistant, frop apy point on_{4}, the, olignment, ther pasition of which, is reqpired to he Gixed, In fig. 1 , whore, p is much neare! than a to the wrowking part of the eligmmot, the intersontion, is bod at x, although good iat $\%$. In this case n, the segment of the circle continues to make worse and worse intersections as the distance frpma increases, aud where the probsble errors in aligmonabt are also increaning. In fig. 4 tha intersections get bad at y, where the errors in alignment should be small. This is a muoh better arzangemeat than that in figz 1 .

In fig. 2 the intersections are goad all aloug the alignment,
zndi, Mondition. Fig. 6 道ustrates this condition: shontmess of bope, amall, errors in quurvey, ontin truly sligning the centfes of the markg, may throw that obser yer many, feet, to the right, or left of the true aligninent Lif.the aqgment of , the circle (oa) comtairing the angle cuts the alignment, at an pblique gagle, aspin the diagerann, the 'pasitiou mau be found, at y : $প$ F y^{\prime} '. ., Assuming in addition, smpl) itirixars in the computatious iof the magler andi n "letting gQ", the jositicu may foo, fmally found at z, ar z^{3}. Cqupparijg this "prolable enzor" under unfavourahle qainditiong, with that, worked Qut for, the , creas sindererection of twq alignments, it is found that $x z$ is 85 feet, where the base ak is 200 feet, αx 1,000 yards, and the apgle $a x y 95^{\circ}$. Where the angle axy is 90° or thereabouts, the error is reduced to 34 feqto'neurly all of which is due to faulty alignment.

Sad CPpuititicu. The angle should shange, rapidly as the observer lanyes along the alignment This a, henular, rariation shpuld be ath leagst 1 miqute yer yarc, rand mone it possible. lan
 good infarsectipps all along the aligument, but the angular variation at the? puter pprtion of the latee will bo sloyropwing to the senll distatice betwerin p and a Tu phyiate this ebjection, a unark s, (fig. 3) may be chosen on the ather side of the alignrepent from ρ. The intersections will be just as good, and the angular caniation will he vesy much rieqfa rapid.
The diptance $x y$ in figures 2 uid $3,19,1,409$, yards on a scale of 2ii. to a mile, anut tue anyle pye is 18 . larger than pxa, giving an average variation of 77 mibute per yard. In fig. 3, whem?
(4805)
the angles are taken to pr and in the ererage variatian is 3 办inestes per yarch

When both suadran pua, off the atiguments the obsarver cannot
 swainy but aby islight error in alignyamat will be of smanl account in wiow wif the ripid, angudar manlation and exoellant gegmental intersection obtained.

 angular variastion is bat, mad the mbenmendis actually \& tangent
 portion of the line. It will be seen that at the pointgs $y^{\prime}, x^{\prime}, p r$ subtend the same angles as at x, y, the intersections are good,

 the fighre, it will De' seetr that there widy be form poims, h, 'stu; at which the sargle will be the same. It is evideat therefore thate this phase of the methbd tohy head to ball resultits, villoses. cate is taken in whlintg off particulak cases beforelibide. ONer the baid "drtion's 'bf the alligytumt, y y^{\prime}, potitions might be fotidx by the method of etross-intersection, which tould be'unsuituble fơr positloty near s.

4th Condition, THe 'errorls due tho farllty 'alighmerit hate
 fixed by hrianguldtion, and bhould therdionte-be acotrately khown. These nb byks should twe st the sante level, 'th facilitate observatioh and abviate errot. Where the niathes ate brodd, 'and the shade is therty, the centres' bf the matkes shoruld bedenty visible.
 by means of the station-potitter, which is vittially a proteactor

 antular valuatibit is sfowall

Warming sextant.

Working on long aliguments.

To avoid coindenisation of vaporn oditive lentes and fritrors of the sextent, it '\& well wilwarn' le'tit the engility room before commencing work.
Pig. 7 illustrates the applictition of some of the foregtireg principlest a Tong aflymment! The latter is matked' on luatlit sides of the chiannell, "gh that', over a good portion of it; 't is possible' to wotk in 'tither diredtion:

From x to ${ }^{\dagger} z$, faciust the witarks cd, the angles are taken to pre $^{\prime \prime}$;

 The intersections apel good alf alotm the working part of the alighment.
Working to es vertical,

In certain cases tha poity p wight be vertically under the point a, where the aliginment as is narked out out the summit of a high

Tofacep. 36.
One alignment and Sextant Angle cont?

Fig. 5.

One Alignment and Sextant Angle cont?

Fig. 6.

cliff. Fair angular variption could theu be ohtained for a distance of 800 yards if the distance pef ware 250 .fept,

The advantage of this system, of fiapling ppsitions in a mineinstead of a horizontal base.

(1.) It is very accurate, when proparly \&pplied,
(2.) It is rapid, if the comamainand observer are mell praptised in their wank.
($\Omega_{\text {a }}$) There is pbsence of nonfmaion, and reconomy of men and matrerial, in comparispa 1 mpith, quther methad, oxying to the absence of sibualling and, reduction in a, aigument panty, and mankec.
The positions of minee, huoys, and apundings fand hay this method should be plotted by pogitignnfigigr whem practicalple, as a check on the wherk; and to obviata the risk of layiag twe mines at the same spotis

Finding plowhions in the thing-fied dibytudical measurement may often be resorted to witll udvantigie ind
(L.) When the channel to be buoyed is narrow:
(2.) When gbod aligtubeints cannot be obtained;
(6.) From tarefulify laid inarks ait long chistance froin the store:

(5.) In exceptional cases at night time.

The monsurement may bee frade aithdr-on the surface of the wtiter, for along the bottomu

Measuremeats along the sifface are difficult if the intervals exceed 100 yard $\%$ sand are seldom practicable ad this distance if the tide is at alk strong. whey are ceasily carried on in smoth still weter of eblall depthe by rundidgi meastiring linee between boats moored by three or fitit achiof s!

A abieg alignment mayibe divided atp into eections of 400 or 500 yaxdes loy large' marling buloysi the 'positions of which are checked by independent obserwatidns, and the intermediate broys laid by meastrement along the wriffare from these large buoys. It is convernient to use coir oy grass fopel whens meatimg on the sarface, as it does not sink; and is lightuo luapde and to haul taut.

The following modifidetion of the method may be used for rappidly buoyitry out an aligturrent whem the positions so buoyed are at even distander apport. I'ke layisguout steamer tows a boat after her by means of a stout to rope of such'a length that the dlatance from the ventre of the bdat to- a selected spot in the laying-bul; stemer is equal to the irequired intervali detween eache budyed position. The rtearner, with the hoat in' tow, proceede whong the aligwnent, and drops the finst buoy by observation or cross-bearing A the boat copine abredast of this bruay, a signas is made to the layyindotut atremerty and winother buby is dropped, aud so on.

Dare must be talien that the iuterival is correetlyikept, as any error is multiplied by the murnbdr of badys laid. The boat, if small, may use a sea wichor, gridrag a plece df timben to keep the tow rope taut. An indepondeat moaswing line nay be used
to find the proper'spof' on the layinguive steamer, froin which to drop the buoys, aftler the sow rope is stretched out, and the steamer is proceodinug her norral rate df epaed.

Where mines are laid in rery adraneed pesitioms at considerable distance froit the shtre, it may aften be practicable to mark the positiois of the fardifori-loaxes with some degite of accuracy, and from these positions to nreasure off to the mine

When there is a suffictetat "rise and fall of tide, the most tatisfectiory and accurde nethot of laying ont nuines for experimental purposes is to take the measurempentid on the bottom at low water when the tide hes recelod. In mont cases, this is not practicable, and tiven' the measurements can bither be made with measuring lines on the surfate, of by stretchinit chains on the bottom. Very accurate work can be done by the latter methed by sending down divers tor streteb onit the chains and place the
 be very accurately made by uigingeal fromeworl of atimber from which to suspend chamgest

Well-stretohed rope must be used for measuring linels, which should be of sufficient size to stand the ureqsiderabie strains. unavoidable in surface work without stretching or parting.
The rape shoutd be manked when wet, and with a grood steain on them.
1The errors ocraring by this, mathod are due ta ingepuwayy in fixing the position of the starting-point from which measurements are takien, incorreat measuriog limes, and inaccuramy in kesping to the proper aligntinnt. Where the starting-noint is a buoy, or a boat hanging to a buoys therfirst etror may be considerahle, an that it is gemereally adriamble to take precautions, either for getting the starting-poins intio position by laying ont ono or tise anchors in the praper dirention on to fix the actual pasition of the starting-prointiat the Fima the stryitime comes on the measuring Hined by meame of indepemqeat obsorvations!

The errors due to the lines abould he tuifing when the measurements are ucade from several independent, stiarting points.
The ervor in alignment miny or may not be sorious. If 中he alignment is being run for any distance by surface measuremant from a point where there is to possibillify of ereotiing marks, a buoy or boat should be moored somel distanco out in the ptoper alignmeat, by compass hearing takea from the starting-pointh:

- The , directivan of the adigument abould then be rinecked fromeach fresh starting-pointul The advantages of the method of actual measurenient depend on the conditions under which it is used. It is xapable of givixgeg great accurary, and in smanoth water, where the tides ane rat very strang; cass be carried out with considerable rapidity The disadrantages of some of the methods desaribed, aze appazent where sha tides ne very strang. and the water very deep. Accuracy is then imposibible, withunt a condiderablo expeaditure of timed and trouble in mqurging hoats and buoys. Another disadvantage of the method arises finm the fact that, if burys are remaved or lost, the measure-

(17.), - \$ Wy meens by the Positition Fluder:

In many iplices praitionifinders can be very *dvantageously úeed for the survey off minerlields and for lgying , out mines.
The long range inatrument will take in olsami-circular urea of Survey of
 pards on a scale of fovfor: It will fix with sufficient accutary any point on the curfeoe of the water within this arean providad :-
(a) The altitude of the instrument is at least $\bar{f} \mathrm{f} \downarrow \mathrm{f}$. tor every 100 yards (60 ft. for 1000 yardey \&cc) ***
(b) This altitude is capable of weing exaotly found at any moment.
The latter condition it best fulfilled by prowiding one or more Batum marks within the field of view of the telescope, and as far off as possible (not less than 800 yarda).

These datum marks should have a water line at iall states of the tide, and their distance on plan fran the vertical axis of ithe imatrument shonld be sccunajely known.
This method is preferable to using the beight acale and a tide gainge, buit for work at wight, the latter mathod would gqnerally be necessarfyr so that the readings of, the height sqala for different rebdings of the tide gauge should be cherlied and qumpayed with resolts obtaibed from absetvations to the datamermarics, Given these conditions, the insumument ean be usied to drayw an apceurate plan of the coasit-line at hight and low weter, gudito fix on this plan the positions of all buoys or mines laid out within its field pfi "xieva. The positions of aligrtumetata can alaol belt traced by keeping the cross hairs fixed on the mater-line at thestem of a whostiel proceeding along them.

From the above, ita, is ievidentis, that if timap were of grant iffic pankance, the preliminary supyey of a mine-field might, be coufined siniply to the computation of the distance on plau betwrefp the datum mark and the centre of the instrument. The xemainder of ithe work can be iorried onti bs means of the ingrumpent itself amd a fenr measuicements on shore.

As a rule, however, there will be time do carry out the survey in its entirety, and as the datum distance, to which the instrument works, is calculated from this sumpey, there chould be no disdrapancy in the plansideatn, by both, methods.
1 .The following rules (Aippendix II, S.M. Girculer 308), have Finding theen drew up for the use of the instrument in fixipg?ngsitions positions. in the mine-field.
(1.) An alignment pole is placed in the sacket over the cenatre of the position-finderi
(2.) The pointer is modred to the piosition of the bugy to be leid, and the telescop is depressed: by the adjusting screw under the vertical pivot, until the pasition for mifont aligmmentican be gixen"'
(3.) The frout alignient mark is then erected. This shoulth be $1 / \frac{1}{l}$ inches to the right ofi the point seent to enlaw for
*Nove- It is very dewinble to get iwice these altitudes, if possiblele,

the telessape af. hhe position-finder baing thgt much to the leit of the pirot of the instrument.
(4.) Ths " inmer ${ }^{\text {pr }}$ rurts in on the ailgriment, and the obsenver takes his datumland then follows the bow water-line of the wesseel, sand causes a flag to be waved by an assisfint. The wessel shoudd run in slowly/ and as the pointer of the Yuin pobskenwfivider is fiust coming ton the propers positions, the
 (a)7, the. bbiw
(o.) In cases wilíre gideat accuraey is desired, it can be obtalined by laying emall matding buays by this method, and tracing a small sketch of their actuabl and intended
 tat an made in laytigig the minerin bizbyss Such a tnabing showd have a scale, and $t \in$ nedith troinv or aw alighulert op it, as 14.4 dtide to the rdete otion of the airor.
(6.) The "teminer"' calh laxy budys with equal aceuracy panning to alignments which da nok prass thrsuigh tiie abserving
 Whim the lefter filade, the romient of tintersection boing

(7.) 'Tit Hipholewighatifos: of' allignmeate, aburse of friendly ckundeltes, exe.| cat be plotted by tracing the path of a
 (1) position-fintex, thed this platad heill be foint of great value 1 in setectivig the plotitig ratural baligmments in the minefield", "which maty materially lessen the! labosar of orecting artificial elighturent madks.
It will be seen that these rules trat of two distinot metherds of fixing pusituons foy the hid of this instrumental The method described in thite Shest five rules requires no alignment macke, except the two erected temporarily at the observing statiou. This chivets great fiteedom in the designt of, the mine-field, and the mines may be echeloned and dizposertin adl sưpts of whys, without reference to the rigbrous limitations imposed by other methods of fixing positions:
The acouracy and speed of this method will depend a good deal on the 中bseribihety off givingithe mobring-stetmere a snficientily good aligument-h) work ort. This shenld be waken into considera-
 room inifiont bof the instument td getia gooid enpugh base; the mine mark may be put up behind the instrument; in which case
 its proper positiou. It will probably be possible, fin most cases,

 - diettance, cak be ioligigieds

In some cases it may be desirable to hut up an instrument therely for the sumtey ind buoyits of the mine-field by this methold, iu which case the comsidemation of the adequnaty of the alifiment bases would become of inpportances in setecting the site.

If the base or distance between the allignment marks is so short
that the yluothrg－steatier has a difficiculty In keeping or to the true alignment，the flag for signaling the＇proper minuet for tirduping the urine or bony may also be used to show the vessel which way to steer；thess，where the flake is held uptight，the vessel＇is on the alignment if the vessel is＇of it，the flay its sloped to a cere－
皆 GH ought uphthlit th fly vessel comes back＇again by＇the line． This method is alpo applicable tin oilier cases where the drignment
 used instead of the postionllfinter，tin which case they position of the mine on the alignment is aséettalited br of her molding．

One great dadditage of this nitthod is，that all errors inlaying．＊ are immediately known，both in magnitude＇and direction，＂hind the necessary corrections carr be trade at the．
 positions of junction＇botel finish＇Be rifotind by this merida，
 Juthctión－hox boat：
＂Plies setorid method，Indicated in Rule r，is sithply a hablifica－ tron＇Sf the crovs－blightiblert method，but is＇hot liable to lis errors， as these are instantly defected on the chart of the position＇ Iinixity 4
 and Station P quint frit ．．．
The following method io netwippalisoble for finding pro－ determinedupesitionts in the wine－findds hut，given a few，promi－ next marks，the positions of which are known on plan，the relative
 can berm mupiddy found with vary fiainlocciprager by means of this method，if it is rightly applied．

To fix the prasitiontof a langer number of squaring taken：aver an extensive arian by，any of the methods，already i，disiscribed，
 many ownefuly surveyed ralizamionts，or the erection of position－ finders foch．The method under acmsideration may therefore be，of great use in gerifain！cosses fin making a，rapid，series，qi f preliminary soundings，when time is of great importayoe，out where skilled －observers，or theodolites are not ayailahle If，single sextants ouly are available，it is well to have two observers taking simultaneous observations．If there is only one observer，he should be provided，either with two single maxtantr，or，a double ＊extant．
 subtended by three or tore fixed objects，the positions，pf，which wa play are accurately himwn．If．the aliservatious are taken from a lat she shank be stationary while the ubservatiotis are being i taken，unless the latter are taken simultaneously，great accuracy is not required．Increased speed and accuracy will，of course，be obtained by having two ar more observers．at work at the same time．As a general rule in such oprarationa，soundings would be taken at the same time ：the sextant observations．

Not applicable to finding pro－deter－ mined positions．

May be very useful in special cases．

[^7]\qquad

\square ．

\footnotetext{

\square

\footnotetext{

\qquad

Plotting the position.

The positiong of the various poinhs fram which abservations are taken can bu platted in three ways:-
(i.) By describing geometrically the seguents of the circles, containing the observed angles, passing through the fixed points and intersecting at the unknown position.
(ii.) By laying off the angles on tracing paper, which is miored about ou the plan, until the lines containing the aygles pass through the fixed points,
(iii.) By means of the "station-pointer," an, Angitument spocially derigned for this parporpen (See Appeadix - Sex tant and Station-pginter.)
T'he accuracy, qf this method af fixing positipns denends on the following considerations:-
Any errors, either in the original qbspryation of the angles or in setting thervo off on the station-pointer, or in the position of the abjectas obser red to, or in tine pian, may pass undetected, th, is therafore desirable to take a third angle to a fourth object, whigh can be used as a check on the positions obtained by the other two nngles. By doing thin, three combinations of angles can, be used, and a close appraximatign to the triye position should, beobtained.

It may be, that though no error has been made in the phaper vation, and the chart is quite accurate, the third angle, laid of from the plotted position obtained from the first two angles, whll not pass through the fourth dbject; this will arise from improper telection of the first three objecte, a subjede of great importhitice, and one in which there is, at lifst; great liability to mathe mistakes.

An exanlination of figts. 1 $\perp 7 /$ / Plates XI, XII, will show the effect of different positions if 'the observed' abjects un the sceuracy of the method.

In fig. 1 the observer x is situated on the circle that passes throingh all three objects, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, therefore of may be anywhere ou the segrient of the circle $A x C$.

Figs. 2 and 9 , in which the ciroles cut each other at wery acute zigles, are"examples of "bad fixels." It is evident that in these cases an observation to a fourth object, such as D; fig. 1 , would have solved the difficulty.

To avoid "bad fixes, avoid choringi objects of which the centre one is the most distant.

Good results will he obtained-
(a.) Wher the observer is inside the triangle formed by the three objects, but sometimes the angles may be awkwardly I large for observation (fig. 4),
(b.) When the olbsetyer is outside, iftu
(21.) The centre object is nearer than either both or one of the others, and eakh angle is hot leas than 40° (figl j) if
(2.) The three objects are hearly equidiathant from the ohserver and each angle is not lese than 70° (fig. 7);
(3.) One angle is small and the other larget provided ahways that in the smatler ablgle the outer object is muck more distant than the centre one (6g. 6).
A good and practical rule, when under way, ig, that either one

two Sextant angles and Station Pointer.

Fig. 2.
(Bad.)

Fig. 3.

Two Sextant angles and Station Pointer cont?

of the angleta should be altaring very rapidly，of that both should be altering anoderately rapidly：This should aiways be botne in raind when asing the sapue pointe for several cqneecurive obser－ wations，as a change of position may have brogght the abserver wearer sand nearer to the circumference of the circle gand aiping all the points．The moment the centre object fecqumes the frurthest，the＂住x＂is to he qvoided．
（Norse．Fixtracted fram Admiralty Memorandum on＂Use of Station－proiater＂，188角）．

For these reasions it is well ta have aeveral points to abserve to，and to telect the most suitable，points for fiking positions in different areas of the field，before going out to work．

（ゅi．）Loying out Marking Buoye．

Laying out markiut burys can be done mach more easily， quickly，and àccurately，than laying out mines when marking buops have not previously beeq，laid，owing to their being so easily let go；and to the fact that there is no cable to talke to a jusction－box afterwards．

For this reason，it is somictimes desirable to lay mairing bhoys before laying＂miftes，＇enpecinlly where the＇mite＇s＇are mbored at close intervals．The errors in laying the former can be estimated，either by position－finder of in the mime－field，and anowed＇for in＇Hibing the mine，the flinkers nsed for marking bubye should only be sufficientiy beary to keep the buoy from ＇Shifting．The buoy－lipes should haye as little slack as possictle， so that they may ride nearly over the sinker．If the buroys are intended to remain out for some time，strouger and heavier gear will be trequired than ip they are merely laid out and taken up again the same fay．It ${ }^{18} \mathrm{a}$ ：great convenierice to be able to weigh marking buoys in tow－boats，＇rand，for this purpose，the gear shouitd be as light as possible．＂ b 6 l ＂ b ．weigftits and half hupdredwreight sinkers are issued for this purpose，one or nore being used as required，and for atrong tides mushroom simkers of $1 \frac{3}{4} \mathrm{cw}, \mathrm{t}$ ．The marking buoys in the Service are described in Part ${ }^{4}$ I．

When marking bnoys or mines are being laid by any system which involves a yisual signal made from sthore；an，appreciable delay occurs in giving the command and it letting go．＇With mines this delay has been found to＇be from $1 \frac{1}{s}$ to 2 ＇sececnds，so that for great accuracy of work the mine or buoy should be a chrresponding distance astern of the part of the vessel obsetred If the stem water－line is observed，the sinker should bo about 15 feet or 20 feet from the bow．

When working ou cross alipnments，ur by sextaut angle and one aligument，the Offiser or iN．C．O ．giving the order to let go， should be about 6 feet forward of the sirker．＂

Sound ding．

Soundligs should be taken at the position of every miue and jutuction－box in the mrine－ffeld，in addition to eny other soundings which may be necessary for the correation of old chaits or the

[^8]verffication of the depthis in "Irreibdly chantul." These spuntings should be taken at lesst wrice, prefurably year high' and low water, Whem the tide is slack, and if the rekulte, when reduced to zero of the tide gatige (the level of high water at ordinaxy spring tides) abreep 'tairly well, the thean may be taken as the correct depth.

The position of each sonudizth is forund hy one of the methods already describbl. In some cases it may be furidu conveine to to sound without laying marking buoys; in dithers fe may te toore convebient dud quicker to lay' out marking bridys fivst; alla sound afterwards. Twd botis working together can do velry ralyhu work in this way, ofe layith butys atrd the other sbundint:

By laying a buoy before; on at the time of sounding, it is very ensy to check, by the pasiti, कn-finder or other means, the accuracy of the worls, and to record the thue positigu of , eqch snundiag as actual ly taken:
If no position-finder be trailable for this purpose, the positions of the buoys can be rerified by observations from the shore with theodolite and plane, table, or by gextant obaip yations taken frön the buoys thenselves to suitable marks on shore. In each case the buoy lines should he, hover in taptover the boyts of a bat, so that they are fair up and cown Care mupt bo. taken to use a sinker that will not dram or to dron the bogts pachor up-stieam to take nost of tho strain. Whem this is done the boat can be shegred prer the buay by kecping the anchion warp over the port of staphoard bow, as the case may les, using the radder at the same time

Such accuracy as, this will, howeyer only be necpssary where the depth of yetter, changes yery, rapidly. Where observations are taken from seyeral, pnipts on, shore, it will be mecessary to arrange simple, flag signals so that sipultanegus observations may he token at the mpmept the huqy line is fair up and down. Calm water is necessary for accurate work of this kind. This mpy often be olatained in the early morning.

The welght of the sounding lead used musi "depend npof the depth and velopity of the tide it, would he befter, in any case, not to use allighter lead thap ope of 9 or 10; 1 lb , and this weight will be effective in querents not exceeding o ? knots, and depths of not more ihan 14 fathoms For, currents of 2 or $\frac{1}{4}$ knots and depthy of 14 fafhoms a lead of lit or $1, \pi$ low and for cuirents of 5 kapthe, with depths of 20 tathoms a lead of 48 lb . weight will be gequired, If possible, soundings should be takeip at slack tide.
Lead line.
Great care must be taken in the preparation and markiog of the lead tiner. It will he advantageous if a line that has alroady been in use f, short time can be procured and pee-marked, but if new line has to be iseef, it shpuld be well stretched and wetted, and allowed to dry again, these operations being repéated two or three times, until the newrees ies; to a certaiu extent, got out of the liaer, the marke sinould then bo putu on when ther line is thosoughly wet, and if it is ellways wall noaked before cammencing sontinding ites leugth xyill be fouxd not to yary wary much; while sounding, it should, bowever, be constantly ćhecked by means of fathoms marked by copper nails drives aloritg the length
of the deck of the surveyling vessel; aull the neassany feahections natude in the sowindings takeul
The redogalsed marlos forthe hand load line abo as fullows:+h 2 fathothe, leather, with two endss

 martived by plecels pof leather, on which ithe numbeny should be stamped, and ewery foot betweed 'each faihom ehould be marlied by is smatler piece of leather:

When the idepth of watem is kawn iwithin reasonable linute, it is not fecerblary to use the fiervite lead line marked in fathoms and feet. . prieee of well-stextahed line is wetted and messured off to h eonvemient mean depth in round numbers of fectureay af 40 ft . from the lead. The defect ors exoess is the semmang, is then measured off by means of a measuring rod, or a scale of feet marked with copper tacks on the gunwale.

This gives the depth at once in feet.
The precautions necessary in checking this line are, of course, the same as with the Service line.

Where the depth of water is under three fathoms, and very accurate work is required, as in deepening a channel, a sounding rod, marked in feet and inches, and weighted at one end, is preferable to a lead line.

It is difficult to sound very accurately in the ordinary manner in strong tides and deep water. The best course to pursue under these circumstauces is to bring the surveying ressel to a dead stop, 30 or 40 yards above the position of the sounding, and to allow her to drift over it with the lead hanging right down, nearly to the bottom. As the vessel reaches the position the line is allowed to run out, and the soanding is taken as accurately as in a still pond. This principle is also applicable to laying out mines under similar circumstances.

The following is a convenient forns in which to record soundings. Sounding
It can be ruled off in a note book and the results copied iuto a book. record book afterwards.

Nouct Soumbing,	Pasition.	Time.	Fromillist	Tide Gauge.	Sounding reduced to M.H. W.S.	Remarks.
1	Mine 21	$\begin{array}{cc} \mathrm{H} . & \mathrm{M} . \\ 3 & 17 \end{array}$	$\begin{array}{ll} \text { ft. } & \mathrm{nn} . \\ 42 & 6 \end{array}$	ft. in. 76	$\begin{aligned} & \text { ft. } \\ & 50 \\ & \text { in. } \end{aligned}$	
2	F. J. B.	$3 \quad 24$	41 a	78	$49 \quad 0$	
3						

Marks on the lead line.

Another method.

Sounding rods.

Sounding in awift
currents.

Tide gauge.
If a tide gauge has not preverously exdsted at the statidn must be constructed and fixed, reading downwards from bigh water mauk of ordinary spring tidea, which will be the 0 of the tide gauge. The best way of fuxing the level of the 0 will be to observe, as often an possible, the height to which the tides rise on the days near each new and fnil mon, thking note of the direction and force of the wind,ynd latitendant circumstances on each occasion; those observations masy be made while the preliminary survey work on slore is baing capried out, and, by means of them, a fair estimate can lat formed of the level to which an ordinary spnng tide will rise. This method will ofter be found preferadole to taksing a dstame from a chant or similar source. The tide gaugre shoukd bs matked with figuses cut ont of sheet copper, $6, \mathrm{in}$. high, the ceutre of the figure carresponaling with the reading to which it cefers, See Plate WI.

When soundings are going on, a man is stationed at the dide gauge, to record the readings at short iwtonvale af thimes (say every telu minutas)s His watah must agree with that used in the mine-field. A curve can bo plothed-from thesw datha, shawing the reading of the gauge at any moment, and from this the minefield soundiags are redoced to zerou of the tide gauge.

CHAPTER IV.

LAYIN LAND, SHORE-END, AND MULTTPLE CABLES,

Cuntents.

Land cables often desirable whene test-raoms are some distance from the shovent forineating pitts generally required whews shore-end oable is usedw spare oorés in land and shore-end cables.-Steldomidesirable to caryy the imine-field cables into the , testoroom without a break.-Spare cores to be provided in such cables-uldentification of cores and cables.-Cable . nemelb.-Gonsectinigy pitas to be placed in es arie position, and well conceated, covered by rifle-fire; diagrams of connections of cores to be preparedumables to be well boucealed between high and low watat, -Chable outedr-Use.cf shore-end cable, it should run oat to four fathoms sate low waterLanding shore-end cabler-Treatment of outer eads.Anehoring comienting-boxes.
Multiple cables may sometimes bes lais out parmanently, Arrangemands to be perfectod for:getting calales quicikly out of tankar-Laying from drums dadd fotoms cable-lighter-Weight of drums sind cables.-Layirgiover bow and stern.-Brakeromitoppers.-Liaying two cables at same timenBuoying itroak! of cables-A-Atignments-Charting position of cables as laidunShack --waying frow and to the shope.t+ Laying from the coil.

Land and Sharo-snd Cables,

Where teat-rooms and observitg stations are at some distance from the shore, it is generally 'ad visable to liby dowas land cables to a connecting pit constructed in a safe sheltered' position colöse to the water. The catles 'thotld centain about' 80 per cent. more cores than are actually required for the service of the minefiefld, to aklow for caarualties and the nide of udditional mines.

Iu somie cases the connerting pit miny be undecessary, the lard cables being carried on' without a Break to contrecting' or junction-boxes securely anchored a short distauce frome thẹ shore.

Where shore-end cable is used, it will be necessary, as a sulte, to bring the inner ends to a connecting pit, is whioh the goints with the land cables are made. These shore-erds should contain the same number of cores as the land cables, mines those fequipitd for "earths."

In few cases will it be possible or desirable to carry the minefield main cables into the test-room whitont a break, although at first sight it might appear to be the best arrangement.

In few places is it possible to lay out the main cables permanently, therefore it is desirable to take steps for shortening this operation as much as posstble by laying down the land cables as far as they will go, i, er either to a connectiag pit close to the water's edge, or 'fut da Poort didtance into deep water. Local conditions will determine which of these courses to edopt; where the water is deep close inshore and there is not much
 exposed for a long distance between high and low water, it will often be desirable to terminate the land cables at a connecting
 an insulated joint in every core. On the other hand, where there is a difficulty inalauding, or the forerliare dries fori a groad distance between! Figh and Fow Mratep; it is best to caryyuthe land cables out tona point where the laying-out steaimor can bering the ends of the matic caldeslat edilistanes dif theotidea. The cables must In either case be securely twayolded, tor cowered, down to low Thater marks, spring tides. In mindinitry soil the cablebrenorid be
 affords another reason for the rstatement that, ituris generally unadvissble tor carny fal the main logbles tho the teestrroumuwithout a breaki It is' atad ievidident,- thati: where the lyand cabless are buried. at auch a deptho situis necescaryirto throwide al laingo percentage of sperst coresc tho prowide for leasualties, and to haoid having to open up the trench to tay memp cabless, Iurithdse cases where it is feasible twi rum the mainu reablegsininto the teatterdoria
 left in sech rauloipla dableg bo prowide fogncessulaticos or tpbosible anditions to the ciefencesc It is prestumed that in suct /easez therel: iwit onky be a drivall amdunt of ithenchiag, reiquired, sol shat exitite called vand belquicidy laids bath at the rame time it is of
 multiple junction-box.

Identification of cores.

In those cases where the main cables are made up of two or more sections, some of ' whieh are laid downit permanently, the numberting of the gorfas, as figuped tan the torminal battens of the testracomas should, ber adhered to $\mu 4$ tho the phind whare the

 hottons, therefore, mpst pava terminals for the spare oores in the land cables si thesen spd thetins" shore-end "extensions alasen which contain tho some total مf conpss minus "eaxths," are identi-
 tafminali batten in the testropman This pethod of identificakion is necessitated by the fact that all sorts and descriptions of cables may be used for the lamd opnpections, liend, also by the fact of there braing a numlare иf spare caras uled, whinh, sllawa of a change intis gannerqion haing made at the compenting pit, in the oyent ut a cpre af the dand, cable going bod.

The cable trench should be as little exposed to hostile fue as
pobsible, a cimeluitous route td the shore beinglfollowed if дecessary to oltitain cover. In ordinary soit the titinoher shotild be 5 . feet dee uiloar completerlprapteotion is giferr by the features of the ground. In hard rocky ground the trench showid be at least 18 inches deepans;

 The pit and lariding place of the eables should be well oovered' by rifle and moobiliergun fire at cluse range. The pit shoutatbe of, good aizes, and slroubd be so arnamgend that there may the no difficulty on confusion in making the electriad joints between titue cables. Clear diagrams of the connections shourd be nhiarctey itht the labelling of the coreg musbibe very clear and dietinct.

The conceelrinern of the cables betweon hight and low water unark must be capefutly intended to; where the shore is rocky the cables milay, often be placedi in natural fissuigis; or ohannels may be cut for therr, the nandel bing aftorwarda conurated in, on dovaned with large,boulders.

Cables have sometimes to be led straight into at work from Cable cuts. water. In these cases the cable cate or funnel, should emente just beldw low-water sprimge, and in the least oxpoced situation 5 an outlet br shaft mustif be, miovided to casty off the compressed air in the cut, due to the ciese of itide and strese of the wawes, oitherwinde the damp salt ait will most probubly be driven inta the test-room. Where shore-tad cable is ledusione iis this manolep, care mast be taken to avoil sharfo turner' arid naxtow pdissages, and ringiloolts must be pravideditin suitable places for hooking on tackles for hauling it alohg.. A chain shonitd be kept'pasteond thnotigh the cable, out for tiller purpose of having caible-einds tin oriouth

Shore-ead cable is somdetimes requiredis ing rocky and exposed situations, ard especially. on shiingla beaches, where the action of the waves soon destways 'the arnouring of lighter forms off cublo. The 'entheoting bowes at the outberiendsshoudd be in furr fathoms of water at low ltides "The use of "share-end" may often allow of a much shorter soutte being taken to the minewteld, and whus save a great deal of cable and undue resistance in the firing circuit. This cable weighs about 18 tons per knot in air? "for 13 emw per hundred yavds.

The landing of this cable may be easily effected in the following manner:- The position of the outer iend of the cable kawhg been previously buayed; the mooriuts steamer or li liter yis anchored or deeared so thayt wherwill lie over the position of thebacy. A stout warp is paseed eshore and stretched taal:. The shore-end cable is then passed ashore by means of cutters and pimaces, which are ohtuled wated the warp stratched from the
 of cable, which in not paid out until the last boat has stretched the calile from the layking-out stoamer, when each bout in stecees' sidn orunting from the siteamer, stretohes out her portioni The slack in the last boat is hauled up by by party on shore, and at lown water the cenble is bunied. If the length is short, it is vall (x000)

Treatment of outer and of shore ond cables.
to carry out the operation at hightwater; if it isnlong, it may be bettor to do it at low, waten, with a stronge working parivy on shore to walk the cable upi the beach and lay it in its proper pockition, and cover it up.

It is necessary to make careful arrangemental so that the comil neating or juthetiontbures est the outer ends of shore-end and shart multiple calles shalt be easily giot, att, and also, especially whare there are a great number of cones, that the cables do not get mixed up und foul of each other. Such cables are very apt to get silted up, and if they get foul as wohl, will be very difficult to raise and renew. The couter onds, thenefore, must be well separated, and manet ha raised from time to teme to prevero their getting silted ovier.

The conditions under which these ends are laid out vary cons siderably. In some cases the jumetion of the mine-field cables may be made at the end of a pier or mole, the boxes being raised by means of tripping linesiar chains made fast to the pier head. In other cases, the ends of the shore-end aable must be securely anchored in deep water, so that the multiple cablea can be joined of at any moment.

In the latter case it may sometimes be convevient to have' shart lenigthe of ordinmy seven-core cable mattached to the ends of the shore-end cable for convenience it raising. This may; aften be necessary where, ds in some cases, some of the groap cables start at once from the ands of the bhore-ends. The connecting or multiple junotion-boxes art the outer onds of such cables should be anchored by chaina to sinkers moored 20 or 30 yards apart; the positioms of these sinkers boireg found byr actual theasurement or choss-alipmoments. It will generahy be ijecoswenient to broy each cable emok, in which case the tripping: hines for each box may be led to a large, centrally-moored buoy, dnthe homes may alt bre comnected, togethor by'a ahain made fast to sinkers ut either end of the line of bomes, this chain being raised either by grapplinglion by means of a tripping line led ashore to a fastening abave high-wwater matk, or to a booy at one ead of the line (see Plate XIII). Chain peunents thould be led from the conmeoting thaves dia the long chain (sese Plate XIII, fig. 8), so that any one of them may be raised without disturbing the otherat In either case each shote-end or group of shore-ends is provided with a sinker and anchor-ehain dapable of mooring the junctidn-box baat when in use.

Where there is a liability to raovemert of silti er shingle, the boxes shauld be periodically maised to pretreuts their getting buried. Sptacial staps will have to be taken to prevent vessels anchoriwy oper these, cables.

Iaying out Muliple Cables.

Multiple cables may, in some cases, be kept laid out permasnently. This will not be possible, however, where they pass through recognised auchorages, and in this case it is neceesary that every arrangenuent should be perfoelad for getting the cables tuansferred from their place of tarage in the tank or ponds on board the laying-ant vassela in the lents possible time.

Arrangement of Shore ends of Cable:

Fig. 1.

The operation of voilitge cables out of twilks on the drume is a tedious one, and where the tankr non pond decemmodatibn is limited, it is almost impassible to evoped 'a cortaine rate of krark, although it is one of the eperatiotasinthatician he cartied on at night. Maltiple cables are getherally laid from idtume, espebialliy when they are at all worn. New cable that has never been on a drmon is ofter laid aven in long lengthe, iffom/a earefullyatande coil, a snatch-block being suspepded over the centre of it, through which the cable runs ont olpar. Hattens should be placed between each layer of the coila. The cable may be ociked in a launch or lighter towed didngside, on on the laying-out steamer's deck.

The large irour drom (Part I.s plate LXIL) takea 1,000 yarde of multiple cable, and anyi excess can be laid from a coil which is puid out first.

Where the large wooden drums are a vailable, it is, eusier and botter to lay multiple cables, $1,1,00$ to 2,100 ysids in leng th, from them, and not to make a joint: If the iron drums only are available, it may be necessary, in the case of long cables; to use two drums, and make a joint when half way.

A method of loying maltiple cables straight from tanks constructed in a lighter is uow mader trial. In this case the eable will pass ftan the coils through a match-block auspended over the centre of the tank.
The drums and their stands may be mouated on trucks, and, when the cables are wound eh, run down to the pier for embsirkstion in the steamer. The weights to be lifted by the cranes can be roughly approxinated from the following table:-

Multiple cables may be laid out from drums over the bows or over the stern.

The method adopteti will deppend"chiefly on the arrangement of the deck space of the laying-out vessel, and the, number of chble drums on board.

In we case should the cable drum be placed right in the stern of the vessel. If it cannnt be placed about 20 feet from the talfiail, it can be placed fortward of the funnel, even trhen the calile is paid out over the stern. In this case the cabte shorld be led down the side over which it will natutally tend to pray out when laying across a tideway.'
The cable should read from the top of the drum, and this must

Cable tanks on board a lightex.
be seen ita when puttiag the drum futo its stand. The lather mast be wecuncly, lasked down or shored wis: and must bo ifion fised that theskrakenoen fioes in the direction the cable pay y mut.
The brake of the drum must be looked to before stanting; and a. daudepise, ar haulho ofe timibien should be kept haudy for keplying as a bralk uador the rim of one of the end plates; it necessaryThis formsi arvery efficievt brake for the large wooden, drums,, which are upprovided with strap , prakes. A stopper should be kenth ready to make fast the cable, in caecois ittid mecessary to 'dtop ntr change direction.

If- tuda-lans to bs made while layiag, the enginea should be slowed and some slack paid out to enable the vebsel to turn eqsily and quickkyoirflbEAlaak day then be hanle u tat when thie turn it made, byikeepligi a stopper or the bilakes lane If then cable appears to be rumuing out too fast, the brake must be applied, and if the downer dzas not made a turn shatp onough, su that there inia danger uf the cable not redebing the desined. spot, the eugines should ise slowed down and a stappels applied torthe cable, wo that some of the slack lost in the tam, may be

Leying two cables at once.

Buoying track of cables.

Alignments for cables.

Charting position of cables.

Slack,
pulled across the curnen.

Any strain of this nature-tonds to filkw than layitrg-couts wessel, and makes it hard to steer hen properlyr, so that where sharys tums bave tq he made in a tideway, the cable must be humouidd to suit the turning powers of the steamer.

Whene, the ikide: is not very, atpongy the cable mayn ibe Ied thereugh oneiof ithe taller fair leads, was over the lhaw joggeder There in them lesmidangeit of fouling the adrew.

Two main-eablast leading for a geodd diatame in the same direction may be laid out at the same time if tide and sea ave favourable, by towing'a lighter or launch alougside, one cable being paid out from each versel.

The shorter cable should be placed iu the towed vessel, which is anchored at the spot where the cables diverge. This plan ensures these two cables coming pp quite clean, but is not suitable in astrong tide, or when there is any sea or roll on.

Whero there are many nultiple cables ruming for a considerable distance together, and also where turns have to be made ${ }_{\text {on }}$ it is desirable to lay out buoys at the turns, and also in the direction which the cables should take, so that they may wot belaid ou t. tpp of one anothert,
It is also advieable in many cases to put up slignmert pades
 for some distance from the shore,
In every laying-outi steamer, a recard of the arder in which cables are laid shouki, be kept, and alsq a, ppepi ion- fidder cfhart of the actual courges of the, sables as laid so, that in case of a "cross", or foul iil under-ruepqipgo the pables mpy be, recognised without dificicilty
The amoput of glant requrred it main cables will differ in accordance with local conditions and the method of laying nut. In stroupe tides, mitd deper water. more, हlach is requirpd than wiliera the fídee are weak and the water shoal Again cables laid fruiil drums requive iess slaok than thase lexid from coils, and
the proportion of slately in short shoild boungreater than in long coablek! : 1

The folldwing formula should tyrwwider sufficient *lack irr most cabestai' $m i$

Let $m=$ measured distance on plan,

For swift currents and deep water $x=20$.
Pot weak dartents and stioat watter $2=040$.
The following table gives the leftriths of cables worked out by different rules:-

Hedeltired Distance en Plan.	Swift Tideg.	Werais tiduc	old Rule, M, D.
8000	3290	3128	114 \$220
2000	2150	2100.11	(17) 2220
1000 500	1100	1075	1120
	+		ST0

When layivg cables frome the Guttetign- box invards, the sack cable remaning over will hare to be put overvobrd just where all the cables converbe fogether ath if thard ore man'y cables, thits mady cause fouling ant' trduble. Thifs 'slack 'wilt not be

 dilsposal fin the hest tay must be cdustidered?
-If it is in'ednvertent to have all' the 'dack 're'dr' the shore, 'te ll still more so to have it ath at tre. furction'tbox' Jutt in the latter
 the Juhtction-bibx.

The sfidck cable tertianinh oxer shotitd not be cult off, as the cable thay be redtrired in another póstiton. When laying from

 accirrate pokstion', and' the bode is 'made fast tot te. It is' advisable that this boat's anchor should also 'be fadd. Stat "in diréctron in

 tht stfartińt't?

A 5 -cwt. sinker may sometimes be refigita on the main cable, 80 yards from the junction-box. This length of 80 yards is slung over the side of the veasel in 3 coils, consisting of about 7 turns each, and the sinker (lashed to the cable by 1 -inch rope passed through all the lugs) is slung with a lowering line in the ordinary manuer. The laying-out steamer passes the junctionbox and end of cable into the boat, and praceeds to stretch out the 80 yardis of cable in the proper direction, takiag care not to drag the boat out of position in the operation.

The sinker is lowered out, and let go at the proper moment, and the ressel steams on her course.
On arriving near the shore, the steamer anchors, and disposes of the surplus cable by making it up into a neat coil, which is lowered overboard without stops. If the cable is to be lauded,
of course this is unnecessary. In the latter case the steamer gets as close in as possible before anchoring, and the cable cad. is passed ashobe in boats, as, despribed for shore-qni cable. A warp, passed from the steamer to the shore, much facilitates the operation.

If the cable has to be connected to a previously laid shore-end or short length of multiple cablb; a second junctionhbobd boat will be required.

The boat at the outer end of the cable may be dispensed with. sometioneps, but greant care will then be required not to drag thebox out of position.

Layivg
outwar s.

Laying from the cuil.

If the cable is laid outwards from the shore to junction-box. the slack cable not used up should be disposed of before the sinker on the main cable (if used) is'let toto.

It may be desirable, in this case, to lay a marking buoy by actual measurement for this sinker, especially if the cable makes. a sharp turn at the spot.

When laying multiple cables across a strong tide, they should always be paid ont from druma, and the laying nont yessol ahould go at a good spoed. Sbe should keep well on the up-stream side of her proper coprse, as the cables, get carried away very mnch by the current, especially if the water is deep.

When multiple cabie is laid, from the coil, it is desirable to eqil it down carefully on the laying-out, wessel?s deck, and not to hoist a previously made coil on , boand. Algogd clear deck is required.

With short lengths, the coils may be thrown gyerboard by hand by a detachment placed round the outside of the cail. The speed of the vessel should not exceed three knots, The detachment for this work should consist of old practised bands, for on them will largely deperid the successful laying of the, cable, without fouls or kinks. Cadsles laid from qoils require more slack than those laid from drums. It is wiell, therefore, to stapper the cable from time to timer and tainten it out along the bothom if there is any fear of its not lasting put. Inexperienced men are apt to thrqw the coils overboard, with gneat freedom, and use up much more cable than is requaired,

Various methads of moaring dormant junction-box bwoys ayer the outer ends of permanemby laid mpin cables, are heing. trind. Those giving the most satistactory results are descithed muder "tuanction-bax Moorings."

CHAPTER V.

JUNOTION-BOX MOORRINGS.

Contents.

dunction-boxes are generally bnayed in paace time.--Buoys must be removed in wan, - Hormant buays may be ueed for main abless
 the two methode, with direetions respecting moorings, buoys, \&c.--Experience must determine which method is most suitable at dififenent stations:
 vides.-Boat to be allowed to ride in natural position.-Tuse of eables in kreeping position. \rightarrow Use of "streqm" mooring in deep waten, Siukers on main cable sondetimes desirable. Lowering the how overbolind.-Haising the box-mailing and "molifle" junctiopresoox boats.
Dormant Juettionsbrix izhuoys.
Junction-box Boat's' Crewau-Stores.-Daties.-Managembent of boat.-HSafety of orew.

J_{1} unctiopp-box Mporings.

Junction-box inotrifges servel the double purpose of archaring the end of the main or group cable with its juvuction-hox, and of mooring the junetion-bor boat when the box is raised for the purpose of camecting cabbles an inesting mines.

During peice openations the junction-box is genersolly burbyed, in ordex that it may be raised whien desired. Wherthequines are all laid outw howeven, buggre are mod required, nor aresthey allowht able in time of war, as they show unmistakeably the position of
 naited by grapupling, or unders-tunniages the main or group cables ; dormant junction-box buoys maty be lused, speccially in donspection with permanently laid mazn cahleis, as describod laten on din this chapter.
Therre ate tawo deadiptidis of juxtion-box mownings in nee.
In the first method (see Plate XIV, fig. 1), the huny is attached by a wire mooring-line to a sinker, and a segond line, is led from the top of the hriv ta the jungction-kax the lope ridea to the Two methods of mooring junctionboxes. buoy and raises the box by means of the trippiagsline.

This method necessitates a large buoy of sufficient buoyancy to support two wire rope lines in all tides and weathers. In rough water, a buoy of this description strains and jerks at the sinker very much, so that, if damage to the moorings is anticipated, it is desirable to introduce a length of heary chain between the sinker and mooring-line (fig. 3), to deaden the jerking action both to the buoy and boat. In strong tides the two lines are apt to twist up and foul, and, where the rise and fall of tide is fairly large, there is some danger of the buoy riding to the box instead of to the sinker, unless care is taken to lower the box near the latter (see Plate XIY, fig. 2) .

If the buay is removed, the top of the mooring-line should be attached to the box, and the top-af-the box-line should be stopped to the main cable as far back as it will reach, after the manner of a tripping-chain.

Tength of nooring and bex-lines.

Another method.

The box-lime is nsually twice the length of the mooringulive to ensure the buoy always riding to the shoker; but eventhis length would not be enough if the box were lowered under the faulty conditions shown in Plate XIV, figer en The wooring tine shounld evidently beras short as possible - 10 ' longer than the depth at HW.S. should genenally be sufficients:

The second description of mooring is illustrated in Plate XV. Here the bumy is asilight as possible. It is atached by means of a eoix, of other lighrb, steong line, td a tripping-chain, lyy means of which the weightin of the box and cables is rased. The box is attarched to a sinker by ánother chain called the mooring-ohsin, which serves ito moor the boat when the boor is raised.

The buoy used may be light and indmpensive. It has merrely to support the weight of the buoy-line, which is practicolly negligibla if of coirliope. Alry sort of buay naty be used provided it is watertight and has sufficient bueyencta" Snrakt wooden breakers, like those used for yachts' moorings, oil drums, and wooden buoys have given good results.

In very strong tides and deep water it may be necessary to use two buoys, or even a lar'ge buoy and a wire rope tripping-line. If the ibuoyiused is too larges and heavy to piok up ond puit in the Hoaif a slack bight ofifhe bucystinle showlid be made fast to the top of the; buay to catcli hold of. The lowen end of the bight should le made fast about 10 feet dowin the buoynnope; so that whe latter may, be hetiled in without having to lift the buoy, Thejlong pitce of trippialechain between the throy-line and box obvilates any chasiee of damager to therbax and wablea forbin the straining and

The buoytline showd be 10 feet, and the teripping-olsin 30 to 30 feat longer than the depth at H.W.S. Sted length of the mooringsohain should bo eqqual the $\frac{9}{4} \mathrm{~d}$.
itw this description of moorang thet is nothing to foul if the box is lowered carefully, and not thrown overboard.
'When the bniogsis removed the buowlinashorld be taken sway

[^9]1

Junction Box Moorings.

Fig.I.

Toface p. 57.
at the same time, the tripping-chabry beirig seofiode to the main cable as fat back as jt whll deach. . . , "I it is

In most onses a 7 of 8luewt. sinker will ber butficiently heary to moor the "jtituctiondhax boath. In strong" tidets of 8 "knots and uywardex $11 \frac{1}{4}$-c wt. simpers should be used.

- Wherience will determine which of these nethode is the bettet sulted to partioulaw stations. At some places, it 'ma'j'be found thet the light buoys and lines do not stand, of that they gett 台toldn; and at others, that the two wire ropes attached to the same butoy bwist up and gett foul. In aill caseds, fiowever, it shotld be remembered thett ores the mines are down, atid in good order, groiap ftumetionbor buoyye at all events should 'toe removed as soon ats' póssible.

A jutration-box'boat must lie close to the'proper position' of the junetion-boe in ortder that the cables masy reach to ver. She must therafore moor short up to the sither for she has rot mine cables on board to which she can ride. In strong tides or winds all the eables should come in over the bows within siz feet of the stem, and the boat should be'dllowed to ride to the cable which leads away nearest to the diuseltion in which she heads. If no cable leads approximately in this direction, she may ride to two cables, one on each bow.

When there is much wind of sen, the boat cannat bo moored very shart, ar she will be liable to swamp,
In deep water wader many circumstgnces, the boat is bound to range, a gqod deal if therrs are no cables on board leading in the proper direction. Under these ciqcumstanaes an auxiliary sinkar of 2 or $\$ \mathrm{cwt}$, or the boat's anchor may be laid out in such a position that the boat oan rifie easily oven the proper: place on, Plate XVI illustratess this, the sitepth being 120' and the sea rough.

When the cables $a_{4} b$, are laid, the boat will be able to ride to them, and the sinker, can be pioked upre, The beat should be allowed to show which way she will ride begare tho apxiliary sinker is laid. In this example, if the hoat were riding to the junctign-box maoring line of a length $1 \frac{1}{2}$ timpes the depth of water, she, would be fo yards from, her praper gosikion. For such cases it would be very difficult to provide in any other manner. When ridjng , short up to the sinker, care, mast, be taken to ease quat the mooring-linf from time to time as the tide rises.

A sinker is sometimes placed on the spain cable about 80 yards from the junction-box. The bout can if if pacessary, keop her position by lying bys the main calale to this sinker.

Junction-box boats should be allowed to fide as far as possible in their natural position, baw on to wind and sea; or tide. If the tide turps while, the , boxe is on boari-a gontingency to be avoided if ipossible:- the bogit must not be alloved totum with th月 cables made fast, or a nest of foul cables will be the result; they must be moved round the boat one by one until she can take up her proper position.

Before the box is lowered averboaxhr the F. Q, O, in charca must get his boat into the propes position, so that the box may lie near the mooring sinker. This can be done by hauling in on the moor-ing-line (or chain), or the main vablo. It if uswid to test a group of E.C. mines with the box just inmersed over the side beforg

Weighty of
ink
inker sinder:

Mooring the junction-box boat.
lowaring eqway, in orderita datent any shart gipcuit or fault due to the closing of the box. When this is funally downered away, it

Railing the box.

Sailing

 junction-bos boats.Requirements.

Plate XVII. Plate XVII inurstrates thie method which; so far, appears to best fulfil these-requirements,

Fig. 1 shows the phocess of laying down the bnoy, and fig. 2 the generdl arrangement of the system!

The mrultiple junction-box is connected to a heavy sinker, as aready described, by means of a $\frac{7}{16}$ th mooritu chain. The buoyline to the bex is of $\frac{1}{8}$-m. or 2 -ini wire rope, in length equal to $3 \frac{1}{2}$ times the depth of water:

The buoy, a spectal steel buoy or c. c. case, is attached to a 5 cwt. sinker by means of an explosive liuk attachmenit; \&djuated to keen the top of the booy ge feet under the surface at low water. A "linkwcable" of the same length as the butoy-linde is

[^10]28 face p. 59.
Fig
led from the junctiontbpx to the link, a tripping-ablifn being "tached to this cable and the link-sinker in the ordinary way; The link cable should consist of a piece of dacone, or two single core cables stopped together, so as to poovide a matallit circnit for the test and firing current.

An "earth " return should not be used unless there are not two cones available in the multiple cable for the link circuit.

The s riker and buoy are slung in the same manner as a dormant mine, the link cable, which is paid out first, being arranged in long coils outside the laying out steamaer. The huog-line is coiled down on board.
*The link cable, the end of which is passed into the junction-box boat, is paid out from the steamer uatil it is stretched oas in the

Slinging the dommant buoy.

Laying out. See Plato required direction, the buoy and sinker are lowered away in the same mamer as a dormant mine. The buoy-line is then taken back to the boat and made fast to the box. This ensures the buoy coming up clear, as the buay-line is laid out the last thing.

To render the buoy dormant again it is only necasosery to take Repincing out a new explosive link, under-run the link-sinken, replace link link, between broy and sinker, lower away, and under-ruu the buoyline back to the boat to see that it is all clear.* While this operation is being carried out, the steamer must take care not to drag the junction-box boat.

Damage to the box and multiple cable by the movement of the buoy is obviated by attaching the latter to a sinker at some distauce off the box, and the work of replacing the link is carried on clear of the junction-box boat, and can be effectied at any time while the box is raised by any boat capable of weighing a 5-cwt. sinker. A steam launch,is the bandiest boat for the work.

When the buoy is raised for protnacted work in the mine-field, the long buoy rope and large kuey may be replaced, if desired, by a shorter line and a light floating buoy.

In other cases, it may be necessary to render the buoy darmant overy time the junction-bax boat is removed.

Two other methods of mooring these buoys are under trial, but do not appear to fulfil the requirenhents laid downi so satisfactorily, as the method just desaribed.

Junction-box Boats, Crews, Managoment, \$c.

The success and speed of extended "laying out" operatioths Crew. depend to a large extent on the efficiency of the junctian-box Loat crews. The numbar speaidlly trained in this work should provide, at least three good men for each bat, supposing that maximum number of hoats to be in use at the same fime If a fourth man is required, e.g., in cases where the tides are itrong or the lits ule heavy, he should be a good boatmand although not necessarily trained in the special duties of junction-boxs lbast work. The crew will usually be in charge of a.N.C.O who should be thoroughly conversant with both the electrioal and seafarigg duties in the boat.

The following stores slould taken out in a junction-bax stores.

[^11]boat. The N.O.O. or man in chatrge nust see himselfithed the stoves, are on boand itr a servibeable state before starting. An inventory of the storiss required should be kept in the boat.

1 laife buey, twith line attached.
1 life belt for each of the crew.
1 bucket with buckee rope attached.
1 mop.
1 baler (if there be no punap).
1 long boat hook.
4 oars and crutches.
2 large signalling flage (white and blne).
2 stopuers.
6 sliort length of 2 -it. rope for stoppering.
l: buoy, smafl, marking.
2 throw-líhes of $1 \frac{1}{2}-\mathrm{m}$. ropes, each 12 fms .
An anchor and warp should be carried if the boat is to twork at "shore ends," or on a lee-shore.
1 jointers' box, complete.
30 yards' No: 16 B.W.G. iron wire!
1 plan or mote book of waterpriof paper, showing arrangement of cables in grips, connections of cores, marks for fixing position, telephone connections, \&t:
1 note book and pencil.
1 telephone arrangement, complete.
Leads:
Copper labels for branch cables.
A spare M.D.J.B. should, if possible, be taken to the mine-field, either on board one of the mooring steamers, or in the boat detailed to look after the junction-box boats.
Duties. The junction-box boats axe under the orders of the test-room, and must carry out ite orders with inplicit obedience. They must not take independent action without reference to the testriroom.

When towing the N.O.O. in charge must see that his bobt is trimmed by the stern. He must not allow the whole crew to get into her nose to make fast a tow rope. When cast off by the oteamer, he must get his box' on board 'without delay, and'see that the cables are arranged sos that they lead clear, and that at the same time the boat is riding easily in har natural pospition.

It is the duty of the N.O.O. in charge to pay particular attention to the cableas, both in laying out and picking dip! In the first case he raust see that the cables are led in on the proper bide, and that the box is lowered away carefully ; in the second to have the cable ready for the layirg-out steamer, and to see, ais far as possible, that it is clear of all the other cables and of the J. B. noorings ; this can be tested ly hauling up the cableg as far as it will oome.

He will detall one biand to heare a throw-line to the streamer, every time she flasses one to the boat; and another hand to'stand ready with a boat-hook to catch the throw line if it goes wide.

When the box has been washed, it is taken in-board, the cables are hauled up a little to relieve the strain; and stoppered. In stiong tides or winds the cables should all come in close to the bow.

The cover of the box should then be removed, the inside cleaned, and communication established with the test-room. The labels should be examined, and defective ones replaced.

The crowns, leads and joints should be carefully examined and any faults at once reported to the test-room.

When mines are being laid out, the N.C.O. in charge, should ascertain the number of the mine when the cable is passed to him, and inform test-room when it is connected on.

He should, when mines are befing pitked up, ascertain which mine cable is next required, so that it may be all ready when wanted.

When he recefives the order to close the box he should at once get up flag signalling connection with test-room. It is well to test the closed box in the boat, by making earth on the cover, to discover metallic contact, before it is tested overboard. When the box is lowered overboard for the final teat befora lowering away altogether, there should, not be any qutside strain on the box, so that it may readily be lifted in-board aggin if necessary.

When in this pasition the N.C.O, in, chapge shquild see that all the cables are leading clear.

The box must be oarefully lowered away until it takes the boittom, It must be lowered near the mooring sinker in all cases. When a light hioy is used it should be hauled on board when the box is up. If a lange buoy is used, too heavy to, get on bpard, it should not be allowed te bump againgit the side of the baat.

All the prew should be constantily on the alert for, signgls from test-pjom, and boats in the minerfield, and stations colls of flag stationa should be well known to all hands.

When the box is finally lowered, the crew should ciean down and tidy up the boat.

Safety of Beat and Crew.

The N.C.O, in charge must satisfy himself that the pump (if there is any in the boat) is in working oryder, before starting for the mine-field.

He minst also see that the Tife-buoy is easily accessible, and that the life-line is attaclied to ith.
The should see that the life-belts are servioeable, apd that they are soo placed as to be accessible ata momentik, notice. He should order the crew to put, on the life-belts if he considers it necessary.
If possible, the men employed in junction-box boats should be able to swim.

CHAPTER VI.

SLINGING AND IAAYING OUT MINES.

Contrantrs.

Geveral.-Stuccess in "laying out" depends much ou the care exercised in " slingiog." Large steamers can carry a good number of mines-not always a goda plat.-Nh definite rule can be laid down on this point.-Slin'sing from lighter moored in mine-field.-Not practicable in launches if there is any sea.-Generally advisable to transfer some mines to a lighter, even if she is not taken to mine-field.Position of mine when slung.-Stores used in slinging and laying out mines-Lowermg Kines, \&d. -Description of the process of slinging an E. O, mine.-Slinginit drills.-Coming: up to the position of the mine and matowurring the vessel during "laying out."-Markhg and watch buoye,-Tllustration of above remarks. - Phints to be attonded to in letting go mines.-Cable to be clear and passed to boat with a thraw line.-Dormant mines.-Drills for laying out E. C. mines on F'ork system.
Observation mines-generally laid in "lines" of 2,3 , or 4.- Precautions to be observed in shinging.-Weights to be balanced as much as possible. - Mines to be slung on up-stream side.-Slinging a liue of mines.-Watch buoys to be attached to the twa end mines. - Laying out lines of reines, Ground mines-usually in about $\overline{5} 0$ feet of water.-Lay at slack tide-low water if passible. - Buoyant Tines of mines difficult to lay in over 70 feet of water with sccuracy. - Points to be attended to in laying out lines of mines.-Drill for shme.

Slunging and Laying out Mines.

Success in laying out mines rapidly, and without fouls and delays, will depend to a great extent on the forethought exercised in slinging them over the side of the mooring steamer.

The large steamers can carry a-geod namy E. C. mines slung over the side, but it is doubtful if this is a good arrangement. Very good detatimments are reqnired to prevent fouls and confusion, smooth water is necessary, and the hands of the officer in charge are tied to a great extent as to the order in which the mines shall be let go.

It is better generally only to sling from two to four mines at a time, even in a large steamer, and if cifcumstarces render it advantageous to carry more mines on board, to sling them as required with the vessel's own derricks; in which case two squads of meu may be turtployed in sliphging and laying
 mines on board, unless the submarine-mining pier is a good way off, or unless it is too rough to bring ont a ptore-stip to the mine-field.

These conditions are always varying, so that what is 'best on one day, or at one port, will hot do at all on another daty; or at another port. The officiency of the detachonents, and also that of the coxswain, the state of the sea and weather, and the hatdiness of the mouring steamer, are some of the many variabled to be taken into account.

If mines are slang from a dete-sthit or lightur, the latter should be ancliored in the smoothest water obtainable within reasonable distance of the nine-field. If the store-ship is fitted with two derricke, thety should be mrranged to work clear of each other. In smooth watbr, whein it is precticabli to sling the mines with the store-ships derricks, the rivive case can be 'alung on one derrick, and the sinker on the other; the mooring line and tripping chain beiteg's shackled on all ready for the layirgeout steamer; wheri she aricive alongside, all that has to be done is ta pass the iowering lines throtugh the rings and shackles, the branch cable and tripping chain being passetl on board at the same time. The arrangement of mooring like, cable, and tripping chain, over the nide, uim be done as the vessel proceeds to the position of the mine. If there is any roll on, the mine should be taken from the storeshify with the moloring steamen's derrick," otherwise there is greab rank of accident while the mine is being get into prestion ori the steamer's side:

Where there is a great rise and fall of tide, it is also a'good plan to tansfer the mines fromi thie pier head to a store-ship or Iighter, frum which lhey are taken by the laying-out steamers as required, even if the store-ship is rot takien out to the mine-field. The transference of sortite of the mines to a lighter may also considerably expedite "slinging" and "/4 laying out," when there' are two or more steamers at work, especially if the pier hedd is at all cramped, or the cranes are few in nuraber, or the water shoal at low tide.

The position of the mine in a fore and aft lirection, and the side on which it is to be slung must be considerel. The former is only of importance when there are two mines slung on the same side. When there is only one mine slung on a side, the sinker is shung near the bow, the mine and circuit closer coming next in order, at intervels of 10 or 15 feet. The side on which the mise is slung is generally of importance, unless there is no wind of tide to speak of; the mine should preferably be slung on the side which will cause it and the cable to go clear of the vessel after the word "let go," otherwisp it may bo recessery to

[^12]
Position

of mine when aluig.
＂f eman asteri＂＂after laying，so as to got mine and catule on the of han side of the vessed，

（14）Stores used in Slinging and Laying Out Minces．

Lowerng lines．

Lowexing hooks．

Sinkers and mines arq lowared ayay，by meana of＂doweringt lines，＂which are also useded to secure them whemplung aver the ship＇s side．
－The sinkges or mines may be slung in the bight pf，the line in which case they are lowered from one end of the line the ether paing madatiast on bagrd，This quly thromu half the weight of

${ }_{15}$ Ruayent mina－kager ara，ufady slaygit in this mannen，with ushont＂，ip wering dines，or ，lowerivg rophto about six fathoms in lepathy Longer lowering lines used in this manner are，howarer giome－ tinges used，eyen，for sinkens．and ground mines．Tawariag lines are made of Brim．or fintrane，Caje must be taken，that the ropa can pass freejy flurough the ring or shackle on the weight，to be lowered，and，a little，groase may be put on the rope near．the zip of the xing or shackle，to ensure the weight staxting ath nonce－

This grease should nat extend to the panning part inhboardoi or the weright may take charge，

Lowering lines shopld be iof pofth legid whito ropes so that they may he ensily belqyed，sund rum freely round the cleat when wauted tor Haxd raper especially when wot is difficult to halayts and ruus，very badly on the clegt
The working：loyd for áriz，rope in geade．condition is 9 awtor

 dercribed，tha．safe woxthing land fox the dqubled B－in rope，ias
 jing at the nip is smooth＇and of good si⿰扌斤日，so that it may not cut the ropo：
Wheu singers and，mines axe not let，go＂by the run，＂but aHy lowered to a cnnsiderabie depth hefore＂lettingg，zo＂zithtis，hatiten te Hfe singhe lowequing limes，fitte？with＂lowering hacks＂The lathar hald，the weight only ap，long as a continuopus strain is thupwn pn then，and at ance disengage when ．this strain is， usmpred，either，by the weight being taken by the mooring line： or the ground．Thene fowering linea should be of A－in，ropes if． thie weights to he lowered exceed $12 \frac{1}{4} \mathrm{cwt}$ ．All formap of lawering hagks，are fittid with safety keys，or catchess whioh must，be released dog the command＂stand by to lower，away．＂Lowaringe hooka will psually be employed prith ground gases and dormant mines，（both sipker and case）．
The best fornz of lowering houk，howaver，will not prexput the sinker turning round and pound，while being lowered，and kwist－ ifg up the rope and mooring line．

This can only be prevented，（1）by seeing that the lowering line is well stretched hefare it is used，by a strain at least equal to hall its breaking weight；（2）hy lowering away veny sampitly，so that the sinker has not time to turn round．

Four－inch rope is generally used witb－lowering hooks，but this
size is only necessary for the $500-\mathrm{lb}$. and $600-\mathrm{lb}$. ground mines. This rope requires larga cleate, of which it is well to use two, passing the rope under one aud makiug fast on the other. Its breaking strain is $5 \frac{3}{3}$ tous, and safe load 16 cwt .

Lowering hooks are hardly required except for ground minecases. All mines having buoyant casos can be let go by meanis of short lowering lines. Mine-cases cau be slung a foot to 18 inches higher out of the water by using lowering lines instead of lowering hooks, and this is a great advantage in most cases.

When the water is deep, care must be tuken that the mooring line aud trippiug, ohain are arranged so that they may rum put quite elear; this is best done by taking plenty, of room in slinging.

Three-fathom lengtios of 2 -iv. rope are used in slinging mines to keep them out of the water until just before laying. They are made fast to the cleats in the same manner as short lowering; lines or head lashings. With the heavier natures of mines these lashings should be of 8 -in. rope, so that they may be certain ta hold them in the evept of the lowering rline parting. Another precaution to be taken, especially when there is any kea on, is to pass the tripping chain round a cleat as near up to the weight as possible.

Chain slings consisting of three or four 4 ft . "legs" radiating Chain Slingar from a central ring, and provided with hooks at the ends, are very' useful for slinging and disembarking mines rapidly. By using. two legs spherical cases can be slung with the axis horizontal, clear of the water.

Mats abqut 2 ft. 6 ius. square, made of unstranded tarred rope, have been found very useful for transporting nines stowed in the after part of a vessel to positipns forward, whare they can be slung out-board by means of the derrick. These mats should have a couple of beckets or eyelet holes worked in them for attaching a hanling rope to. These mats are found specially useful in the case of vessels unprovided with after derricks, or when it is desired to do all the laying out forward, or when the state of the weather is such as to prevent many mines being slung at the same time.

Slinging, E. C. Minez.

The mooring steamer lies alongside the pier or store-ship in such a position that the mine-case or sinker may be dropped by the crane iuto the proper place just ontside the gunwale. The weight is lowered so that the lowering book or line may be passed through the shackle on the side lug of sinker or ring of attachment chain, the 'weight being steadied ard hauled into position by means of a hook rope manned by a sufficient number of men ou baard the mooring steamer. In masted steamers a "Burton tackle," made fast aloft, is very handy for this purpose, and requires fewer men to work it than a hook rope.

It is of ten best to sling the mines off the pier or store-ship with the vessel's own gear, one reason being that in anything of a seaway it is much safer to do so, and another that the weight can be slung on the further side, if requifed. The derrick (4805)
of the nootinge steamer may be fixed by prearis of the guys orer the proper position of the tweight wheri dung, ath the latuer dragged into positition by means of the derrick tackle, the fall bs which is taken ronud the steam capstan In these cases the hook rope is worked from the store-stitp or pier,

Plates XVIII' XIX, XX, and XXI illustrate the method of slinging the various parts of $10 . \mathrm{c}$. mines. Thie sinker, of ground mive-case, is' so plated that there is a sufficielt splace forward of it for flakitg the tripping chain and part of the branch cable over the sitle between it and the joggle, to which the long link at the end of the tripping chain is made fast with a single spun yarn stop. The chain and brarich cable over thite side are similarly secured at the requisite intervals. Not more than two returns of the chain shourd bie seconed by onestop. The Bnodyant mintie-case, with moothng line, is then slung 10 or 15 feet aft of the sinker, in the bight of a short lowering line of $\$$-in. rope, about 6 fathoms in leugth. This line is passed through a shackle or rlog attached to the case or to the upper attactiment chain of a buoyant mine-case. "The of fort," or mouth end, of the case is secured in the same "tay with a short lashing called" the "foo" lashing," so that it may not drag In the water if the steamer has any distance to go, or the water is rough. If there is a circuitcloser case, it is slutg in a similat manner, aft of the mine-tase. It may sometimes be necessaly to sling the mine and circuitcloser case off the pier in one loat, where the drop is greater than the length of thre upper mooring line. For this purpose it is convenient to have a choin aling with four legs, each about fonr feet loug, radiating from a large ring, the brit of each leg boing fitted with a good sized hook. This sling is also haudy for quickly unloading vessells, especially when a steam crane is in bise. The mooring lime is shackled on to the centre lug of the sirker, and the table is then slung on board, together with the tripping chain, the latifor being shackled to a side lug of the sipker. The circuit-cioset cable and moopitg line are 'hutg in short cuils over the side of the vessel between sinker and mine by means of spun yarn stops, which shap one after the other as the mine is let go. If the water is very dfep, and the mine is let go" "by the run," the hight of mppring line and cable may he stretched out aft outside the vessel.
The cable is coiled down in the approved place, either formard or aith, and care mpst be taken that it is arranged to pay out so that it shall not work under the boftom and get foul of the screw. It is well to put a stopper on the branch cable where it comes on board, to prevent its being run adiey with by the tripping cỉain.

Branch, cables, "paid out from coild, should bo' recoutod, if necessary, after sliuging so that they may run oit, clear.
The larger nature of C. C. mlnes should niot, as a rile, be laid out from launches.
The masted mooring steamerì are prowitled with akpllancess forslinging mines and sinkers at convenient Wipces over the sidè. The "burtpns" referred to on page 65 take the place of hook ropeg, and fender the operation quite simple, even in a seaway The
slinging mines fiom inhasers,

same urinciple cap he applied to the how derricks of un－masted steamers in the following manner：a sfingle block is made Yast to the top of the derrick mast，or tod the central part of a davit derrick；the book rone is then rove through this block and booked into the weighta which can，then be lowered info position， even if the end of the dertick wlumbs some leet outboard．Der－ ricks provided with guys can be lashed in position during the operation．

> Syfyctyg Mines;

Stores Required．

> 1 lowetng line (fitted with lowering hook, if required) Stores require

1 lowering rope per mine（or＂head＂laghing）．
Briarkings per minte．
1 解arlinespike．
1 hook rope．
1 axe．
1 月ag！
Spun yain．
The should form part of the equipment of the vessel which lay＇the mines．
No vessel to carry less thay proportion of stores reqquired for 4 mines．

The party colled the＂Iaving－out vessel party＂consists of 1 N．C．O．and 6 men．They worls in fopjunction with a second party of 1 N．C．O and 6 men who work at the crone，and are known ast the＂crane party．＂

Duties of Numbers．

No． 1 commandd，points out the cleats to be used for ench mine．

No． 2 sfitits sinkers ant ground mine casees，shackles on moorting lines aud trijpting chatus to them when necelssary．
Na 3 assists No ． 2 ．
No．It shings buoyant mine cases and circuit－tloser cases， secures morting linies and catbles stopped to them．
Nd． 5 abdsitice No ． 4.
No． 6 stops stipping thain and cables ready for paying outt：
No． 7 has charge of hook rope，and assists No． 6.
The whole of the wumberts assist in getting the different plarts or＇the mine ìnto position，dud＇iti stoppting ingorthg Kines，tripping chatids，and cable 最影 position ready for laying out．

[^13]
Coming ef to the Position of the Mine in Laýing-but $\nabla_{\text {fosel. }}$

The mannet' in which the laying-out vessel 'is brought uf to the position of the quine, and is subsequently mancouvred in the process of layiug the branch cable to the junction-box boat, will depend altogether on the following conditions:-
(i.) Method of finding the position of the mine.
(ii.) Strength, set, and state of tide, and force and direction of wind.
(iii.) Side on which the minc is slung.
(iv.) The nature of the laying-ont vessel.

(i.) Method of Finding the Position of the Mine.

The various methods of finding any required position in the mine-field have been fully described in Chapter III, "Survey of Miue-field."

It merely remains to consider how these methods are applied is practice for laying-out single mines and their branch cables.

The cross intersection of two alignments allows of considerable

Cross intersection.

Sextant angle and one aligment.

Actual

 mensurement.
Position-

finder and one align* ment.
freedom of action, as the laying-out vessel can work aloagg either alignment, and marking buoys should be rarely required.

When the position is found by a single alignuant and angle, mines can still be laid in manyy cases without marking buoys. It will be a convenience to have the alighment marked on both sides of the channel if possible, and two angles for each mine, so 'that the laying-out vessel' can "work in either direction along the aligument.

Marking moys hámper the laying-out vessel to some extent, take a certain time to lay down and pick up, aud in strong tides and deep water do not mark the position very accurately; and are apt to get swept under the surface. Neverthelese, in many cases, it will be found advantageous to use them, where the method of finding the position is that of a single alignment and sextiunt augle.

When the mine positions are found by actual measurement from a junction-box boat a long distance from the shores it would in most cases be necessary to lay marking buoys,

When using this method, mines might often leq laid without marking buoys, as the position of the junction-hot, boat would be a good guide for estimating the proximity of the laying-out vessel to the pasition, In many cases, howevex, the atremgth and direction of wind and fide, the position of the mipe in relation to the latter and the junction-box, and the course of, the laying-out vessel mauld rendes it advantageous to buoy the position of the mine before laying itm

It must he remembered, however, that rapidity of work wow in many casos be the first copsideration, so that, pravid fair accuracy copld be obtained without their use, marking buo: should not be employed, if they in any way delayed the work completing the defences. An inspection of the Position-find Olant would ahow at once if it were neeosaary to revlay any te manes.

(ii.) Strength, set, and state dr Tỉbe, and yorce and divection bif Wind.

If the tide is at all strong, it may be used to help the laying- Tide. out vessel to reach the junction-box after the mine is laid, the hopws, being kept up-stream, and the cable leading clear over one bow. In workiug along an alignment across a tideway, it lís necessary top keep the head of the vessel up-stream, unless marking buoys are used, In very stfjong tides aud deep water, and where the bpttom is uneven, accuracy of layitig is. best obtained by bringing the vessel to a dead stop; or 30 yards above the prapen position, and allowing her to drift over it with the sinker lowered to its full extent; the vessels can then either drift down to the junctiph-bos, or steam up-stream towards it, according to circumstanicas.

If the state of the tide is such that the mine or circuitcloser cases are near the surface, care must be taken not to drift over them after theig are let go, and watch buoys shduld he aitached to the mine or circuit-closer cases, so that the layingout yessel, may keep elear of them subsequently.
In many cases the wind may be of more importance than the tide, its strengith and direction nas be such as altogether to change the conditions of laying-out, and to necessitate coming op to the pqpition of the mine in quite a different way from that which would otherwise be employent. For instance, if the wind were sfrong and against the fide it nitght quite prevent the laying-out yessel from drifting down on the junction-box boat in the manner just described, and might necessitate the use of a marking buoy to alloww the vessel to come up to the position of the mine in such a mauner that she might steam straight to the junction-box boat afterwards.

(iiit) The sintie on which the AMine is stomig.

This will generally be of importance, especially when the cases are near the surface at the time of laying. It is desirable that when the mine is let go, it and the cable should not drag under the vessel owing to thp set of the tide. This consideration will affect, in many ilistances, the manner in which the layingout yessel is brought up to the positiun of the mine and is subsequpently mancausied.
(iv.) The nature of the thying-out Vessel.

The size and, handiness of the laying-out vessel are of importance, inasmuch as the large steamers timman make sharp turns in a tideway, nor can the heln th-

> e branch cable to y to drag the mine ssels like launches to assist them in junction-box boat. toing romarks on mlustration f 4 . C. mines are of above ner, all four being romarks. IXIIF. The plans

Coming té to the Position of the Mine in Layined-out

The manner in which the laying-out vessel is brought ih to the position of the pikne, and is subsequently mancemvrod in the process of layiug the lranch cable to the junction-blox boat, trill depend altogether on the following conditions:-
(i.) Method of finding the position of the mine.
(ii.) Strength, set, and state of tide, añd force and direction of wind.
(iii.) Side on which the mine is slunt.
(iv.) The nature of the laying-out vessel.

(i.) Method of Finding the Position of the Mine.

The various methads of finding any required position in the nuine-field have been fully described in Chapter LII, "Survey of Mine-field."

It merely remains to consider how these methods are applied in practice for laying-out single mines and their branch caples.

Cross intersection.

Sextant angle and one alignment.

Aotual measurement. I
Position.
finder and one alignment.

The cross intersection of two alignments allows of consjiderable frcedom of action, as the laying-out vessel can work aloag either alignment, and marking buoys should be rarely required.

When the position is found by aingle alignment and sextant angle, mines can still be laid in many cases without marking buoys. It will be a corvenience to have the alighmeut baarized on both sides of the channel if possihle, and two angles for each mine, so that the laying-out vessel ${ }^{1}$ chin work in either direction along the alignment.

Marking luoys k'efoper the laying-out vessel to some exfent, take a certain time to lay down and pick up, aud in strong tides and deep water do not mark the position very accurately, and are apt to get swept under the surface. Nevertheless, if many cases, it will be found advantageous to use them, where the method of finding the position is that of a single alignment and sextint angle.

When the mine positions are found by actual measurement from a junction-box boat, a long distance from the share, it would in most cases be necessary to lay marking buoye,

When using this methop, mines, might aften he, laid without marking buoyit as the position of the junction-hox boat would be a grod guide for estimating the proximilty of the laying-out vessel to the position. In many cases, however, the strength and direction of wiud and tide, the position of the mine in relation to the latter and the junction-box, and the course of the laying-out resgel wrould render it advantageous to buoy the nosition of the mine before laying it

When marks on the shore are invisible, owing to fog or other cause, some accuracy can be obtained in laying mines round a junction-box boat by using the vertical height of the mast, or a pole in the boat, a sextant, set to the proper angle, heing used in a launch which drops marking buoys round the boat. Direction is given in this system by compass hearing, or by the relative position of other buoys in the minefield. In some cases actual measurement may take the place of the mast and sextant angle.
(ii.) Sinkipth, set, and state of Tide, and yorce ard dizections dfol wind.
If the tide is at all strong, it may be used to help the laying- Tide. out vessel to reach the junction-box after the mine is laid, the hopwai being fept up-atream, and the cable leading clear over one bow. In workiug along an alignment across a tideway', it neesessary to to keep, the head of the vessel up-stream, unless marking huoys ofe used, In very strong tides, aud deep watcr, and where the bottom is uneven, accuracy of laying is best obtained by bringing the vessel to 9 , dead stop 20 or 30 , yards above the propen position, and allowing her to drift over it with the sigker lopered to ite full extent; the yessels can then either drift down to the junction-box, or steam up-stream towards it, according to circumstances.

If the state of the tide is such that the mine or circuitchoser cases are near the surface, care must be taken not to drift over them after they are let go, and watch huoys should be aitached to the mino or circuit-closer cnses, so that the laying out vessel may keep clear of them, subsequently.

In many cases the wind may be of moreimportance than the tide, its strepgth and directiou may be such as altogether to change the conditions of laying-out, and to necessitate coming up to the pqaition of the mine in quite a different way from that which would otherwise be employect For instance, if the wind Were strong and against the tide it nitght quite prevent the laying-out vessel from drifting down on the junction-box boat in the manner just desuribed, alad might pecessitate the use of a marking buoy to ollowy the vessel to comte up to the position of the mine in such a manner that she might steam straight to the junction--box boat afterwards.

(iiit:) The sitto on which the Mine is stung.

This will generally be of importance, especiully when the cases are near the surface at the time of laying. It is desirable that when the mine is let go, it and the cable should not drag under the vessel owing to the set of the tide. This consideration will affect, in many instapces, the manner in which the layingout yessel, is brought up to the position of the mine and is subsequeptly marcourred.

(iv.) The nature of the laying-out Vessel.

The size and handiness of the lay'ing-out vessel are of importance, inqsmuch as the large steamers cannot make sharp turns in a tideway, nor can they make use of the branch cable to help them to turn, on account of the liability to drag the mine out of position. On the other hand, small vessels like launches can turn quicker, and can use the branch-ciable to assist them in doing so, and to sheer in a tide-way sowards the junction-box boat.
Plates XXII, a.y XXIII illustrate the foregoing romarks on Illustration coming pp to the position of the mine. A group of 4 . Q . C. mines are of sbove to be laid out on the X system from a large steamer, all four being remarks. slung at the same time, as shown in fig. 1, Plate XXIII. The plans

Watch buoyn

Wind.
in red in fig. 2 indicate the prabable position of the layingypur steamer when laying to markipg buoys, or by cross intersections: in a slack tide. The plans in blue indicate the positions of the ressel when the tide is stroug eroingh to allow df ite befing utilized in laying out the branch cable to the jundioh-box. It will be observed that in no case does the vessel drift over themine and cable after "letting go."
Plate XYY穾 shows a slightly different ariangement of slinging and laying out. In this case, all the mites might be laid by the method of a single alignment add sextanit angle whthout marklitibbuoys. It will be seen that, in order to obviate anty chance of a foul screw, the vessel has to go distern Pmiediately Nos. 2 atd 8 mines are let go. This method of manceuvring thid dtedmer requires more skill on the part on'the officer in charge and the coxswain, than that illustrated in red in Plate XXII, whena direct course for the junction-box is steered.
Laying by eye.

There are many expedients in láying E. C. mines whereby the negessity of using markiug buoys can be obviated, while, at the same time, rapidity and fair accuracy is obtained. For itistandey, the position of any of the mines in Plate XXII can be found 'by means of a sextant angle and alignefent in the brdindry mariner. A't the same moment, some object (K K) on shibre is forud to be in line with the junction-hox boat; the laying-out tepser cdh then come in on this temporary aliknthén, and drop the minte whéh crossing the permanent alignment. If a" watch buoy is attached to this mine (say No. 1), No. \$3 'can be laia by eye', with the
 formirg a correct judgment of the propet posititib:

The mooring steamer should be litought up to the position of the mine at a slow speed; ifi some cases, sthe will hiave to come to a dead stop. At the word "stand clear," the enlgines" uhrould be stopped, by the coxswain, if this has not previously been done, Fhe drill details the duties of the various numbers when actually layjng a maine. No. I must hitingel? see that everything is clear for letting, go. The chief points to be attended to are the casting off of all preventer lashings, that the tripping chain is all clear, and not likely to catch in a cleat or fuir leat when running out, that lowerng hooks are unkeded, also that there Ts a stopper on the end of the chainu, (or cable trear the end of the chain), to prevent it running away with the cable: No. 1 must also see that his, axe is handyy in case of emergency, such as a man being carried oyerboard in, a bight of cable, a lashing or lowering line jamming, \&c. A deck hand or spare tiumber must be told of with a poat hook to keep cables, mine cases, buoy日, \&ee., clear of the scrow. Too nuch attention cannot be paith to this point by all conceried.
The lowering away of the mine or sinker renimits some practice. Inexperjenced men should fiot be told aff to lower $600-1 \mathrm{lb}$. ground mines until they have had practice with livhiter yeights. When these mines wre lowered into the water, balf stheignoight is taken off, but an extra strain is "hitown on the lowering line by the rush of water on the case.
, In taking the turns off the cleat one haind or foot should be

Laying out E. C. Mines.

Fig. 2.

Laying out E. C. Mine with short lowering lines.
LAYING OUT E. C. MINE WITH SHORT LOWERING LNES.

Laying out E.C. Mines with Lowering Hook.

Mine or Sinker Lowered "to Just atter Zetting g0. the mark:?
used to jam the nuderneath turn, while , the apper one is taken ofif, and while lowering away, the meu must fake plenty of room and not get their hands near the cleat. The line should not be paid out in jerks, and if the weight is taking charge, a quick half turn round a meigeboanging cleat will stop it. if the rope and cleat are slippery, it is better to use two cleats than a complete turn round ope, cleat, or turns may be taken round the capstan.

Ground mine-cases lowered with lowering hooks should be eased out within a couple of fathoms of the battom before they are let go. The simplest way to eusure this is to measure off on the lowering line from the belayed part on the cleat a length, two fathons less than the depth of water at the mine at the time of laying, and mark thee apot with ai pigqe of spun zara. . Whe line will be eased out till this mark is on the cleat, at the word "Lower away Na. to the mark"
nel Emn

In commencing to overhaul lowering lines (including those some- Letting go. times called " head lashings "), care should be taken to grasp the rope just boyond the gunwale, so that if any sudden strain should come upon the rope, the fingers ray not be jammed. The rope must not be grasped too far from the guawale, as there might then be risk of the man being jerked overboard.
urom the vexticall calboe drum. The slack cable should be paid out near the mine, andinot near the junction-box boat.

In any case the end of the cable is cleared, and led up to the bow that will be nearest to the boat, and a throw line is made fast to the end of it ly meeans of a stapper hitah (or magnus hitch with an extra hald fitch near the sapwn), so that the cable end may be passed into the boat without going slongeide.

Oables laid from drums nust be run off them in good time, so that the thyow line may be bent on. A buoy shonld be kept ready to make fast to the throw line if required. The stemer should pass clase to the boat on the leaward or downetream side, to obviate any chance of a foul.
Dormant mines ade slung in a similar manuer to ordinary E. C. mines, butit the mine has unally to be nearer to the sinker, to allow of the link attachment being shackled $\mathrm{Q} \pi$.

Lowering awny "to the mart."

For domamit mines it is well ta select cases provided with a top lug, through which the lowiering hook is passed. The sinker must be lowered gently until the weight is taken by the short mooring line and lifil? The minetcase and sinker are then lowered togetherc; until the sinker is fairly near the bottom. This applies equally to dormant buoys.

These mines should be lowered carafully to the bottam to prexent any obance of the link luneaking; at they are usaally 30 feet unden water at all times of tide, they should we lowerad away with' 4 in. ropes and lowering hooks. The bight of mooring line and citcuit closer cable sho uld not be allowed to go overboard mutil the mirle and sinker are lawered, so that it may not get under thel hattery and previenit the mine rising on fte explosion zuines. Plate XX.
used to jam the anderneath trun, while the appor one is takem of and while lowering away; the meu must talke plenty of roan and not get their hands near the cleat. The line should not be paid out in jerks, and if the weight is taking charge, a quick half turn round a meighbouring cleat will stop it. If the rope and cleat are slippery it is better to use two cleats than a complete tuitu round ope cloat, or turns may be taken round the capstau.

Ground mine-cases lowered with lowering hooks shonld be eased out within a couphe of fathoms the bottom before they are let go. The simplest way to eusure this is to measure off on than laweriag line from the belayed part on the cleat a length, twwo fathoms lese than the depth of water atid the mine at the time of laying, and marla the spot with a piege of spup yarn. The line will be easpd ont till this mark is on tha celeat, at the word "Lower away Na. to the mark."
The 500 -and $600-1$ b ground cases should be lowered carefully, so that the mayt not takencharge.

Plate XXIV shows an E. C. mine being letyro from $8,42-\mathrm{ft}$. la mehe, short lowaring lines beinge used, and Plate XXV abows an E. O. mine, with gnoundicase, being laid, out with a lowering hook

The mine having been let go, the engines should not be started sigain until it is seen thatipine and cable are clear of the screw; the steamer thein proceede slowly to the jungtion-bow boat, the cable being paid ont from coile, wither from the bow or stern, or from the rextical cabledrum. The slack cable should be paid out near the mine, and not near the junction-box boata

In any case the end of the cable is cleared, and led up to the bow that will be nearest to the boat, and a thitrow line is made fast to the end of it by means of a mitapper hitch (or magaus hitch with an exdra half-hitch near the crown), so that the cable eud may be pessed into the boat without going alongeide

Oables laid from drums must be run off them in good time, so that the thnow line may he beat on. A buoy shothld be kept ready to make fast to the thraw line if required. The steamer should pass class ta the boat on the lewward or downstream side, to obviate any chance of a foul.
Donmant miges ate slung in a mimilar manner to ordinary E. C. mines, but the mine has nsially to be nearer to the sinker, to allow of the link attachment being shackled O .

For dormant mines it is well ta select cases proprided with a top lug, through which the lowering hook is passed. The sinker must be lowered gently until the weight is taken by the short mooring line and lind? The fiustease and sinker are then lowered together; until the sinker is fairly near the bottume This applies equally to dormant buoys.

These inines should be lowered carefully to the bottain to prevent any aliance of the link lueaking as they are usually 30 featimuder water at all times of tide, they should be lowensed away with min. ropes and lowering hooks. The bight of mooring line and aircuit eloser cable should nat be allowed to go overboard until the misie and sinker are lowered, so that it may not get under the dutter, and previent the mine rising on the explosion

Lowering awny "to the mark."

Dormant,

 Kines. Plate XX.of the link. The bight should be paird out with a lowering line as the mine is lowered, from a position some distarce aft of the mine case.

Laying out Mines on the Fork Sybtem.
Drill.
The party will consist of 1 N.C.O. and 6 men, wnder the command of an officer or senior N.C.O., who will give the executive worde of command.

Duties of Numberses

No. 1 superinterids his party, repeats the words of command given by the officer in charge, sees that the varions numbers perforic their duties correotly. At the word "Stand by to lower away," sees that lowering books are unkered, and proper lashings cast off. At the word "Lower away to the mark," sees that lowering lines are properly eased off. At "Stand clear", sees that all inen are standing ciear of all runuing gear, stations himself with the axe near the weight, and. sees that all gboes clear at the word "Let goo"

No. 2 takes up position by ground mine or sinker. At the word "Stand by to lower away," unkeys lowering hook and casts loose lashings. Then assists No. 3.
No. 3 takes up position by ground mine or sinker. At the word "Stand by to lower away," prepares to lower awty. At the word "Lower away to the mark," he lowers away gradublly to the amount ordered. If the lowering hook has disengagen itself he overhauls and coils down. If the weight be still on the lowering line he will, at the word "Let go," cast the loweting line emartly off the cleat, overhawl when clear, and coil down.

No. 4 takes up position by buoyant mine case. At the word "Stand by to lower away", casts off the foot lashing and makes ready to let go the head lashing, which he lets go at the word "Lat go."

No. 5 takes up position by $C .0$. case. At the word "Stand by to lower away," casts off foot lashilig, and makes ready tn let go head. lashing. At the word "Let go," he lets go, overhauls, and coils down.
No. 6 sees that tripping chain and cable pay out properly, cutting stops if necessary, then attends to branch cable.

No. 7 assists No. 6.
All the numbers assist in paying out the cable as soon as they have performed the above duties.

Sungring Lines of Mines.

Obsurvation mines are generally laid out in lines of two; three, or four.
When slinging a line of heary mines, the stability of the mooring steamer must be convidered, because a heavy list to one side is at all times inconvenient, on account of the mine cases dragging in the water; and may be dangerous if there is any sea on in the mine-field, or from the exposare of the crown of the boiler furnace. The weight of a line of four $500-1 \mathrm{lb}$. buoymat mines with sinkers, tripping chain and intermediate cables is
about $5 \frac{3}{4}$ toris, and of a kine of four $600-\mathrm{lb}$! gtound mines, nearly 5 tone ; steps must therefore be taken to balauce the weighte by slinging two minea on each side; or by'sliuging 'more minow on the further'side. Plate XXVI; fig. 1 , showe a fine of fovi' $600-\mathrm{lb}$. grotud mines slung on ad mooring steamer of the Gordon class; Nos. 1 and 2 on the port sides, and Yos. 8 and 4 da the starboterd isider, the intermediate cable raid chain between 2 and 9 being' brodight round the stem and stopped tinder the joggk. The cabledrut is plut in the 'stern and helpe to trim the vessel. At no time tan there be an excess of weight of more than two thlues (about $2 \frac{1}{4}$ tons) on one side, and this can anly occur for the short interval of time between laying Nos. 2 and 3 mines. This excess of weight, however, should rarely occur, as before No. 2 is let go, No. 3. will hidve beith lowered futo the water, thereby losing half its welight. As a rough rule, the exceess of weight on one side should not exceen $2 \frac{1}{2}$ tons in large vestels, and I ton in launches. It has been found that a weigltio of 8 tons on one side gives a list of 8^{a} to a vessel of the Sir Francis Head type.

The advantages of this method of slingtigh are, that the mines cin be kept well forward so that they are away from the screw, and that plenty of room can be taken between eash mine.

The disadvantages are, (1) trat it-nay be necessary to owing the miner to sling the miries, (2) tliat in laying but acrosi a btong tide, the cables, chains, atid lbwering lines, of two of the mines are bound to drag under the bottom of the vessel, so that if there is any hitch in the operation of laying out, there is a great chance of getting a foul screw.

Andther method of slinging, obviating these disarvaittages to a greaf extent, is illustrated in Phate XXYII, fig. 1 , which shows a line of four $500-\mathrm{lb}$. buoyant mines, slung on an $80-\mathrm{ft}$, mimer. Three of the nimes are slung on one side, and the last mine, on the other bow, where it conld be placed by the stemmer's derrick without swinging. Another mine is shown as slung ou that side to reduce the list. This arrangement allows of plenty of room between each mine for the intermediate cables and chains, and after No 4 is let go, the cable can be passed round the bow so as to pay out clear. Of course, this method of slinging is equally applicable to the line of ground mines shown in Plate XXVI. The single mine should be slung first and laid out last.

Plate XXVIII shows a line of four ground mines slung on the same side of the vessel, which should be balanced by a total weight of $2 \frac{1}{2}$ tons slung on the other side.

The mines are slong in the same manner as E. C. mines. Bucyant mine-cases are best slung with short lowering lines, but

Slinging lives of mince. gronind mithes, and the sinkers of binoyant mines, are usually lowered awny with lowering hooks. The tripping chain is flaked over the side forward of the sinker or mine-case, and must be seoured by sprun yaru stops at intervals of about 20 feet along the chain. These stops must be strong enough to check the chain from runviog out by its own weight, bat should part easily when the weight of the mine comes on them. The successfal laying of a line of mines often depends on the care with which the intermediate chains and cables are arranged and itopped.

The intermediate cable between eacha mine Luं lunag over the side in 3 or 4 small goils, ench of whioh is mearrod, by a spurz yorn atop. It is well to talke a turn with the tripping chain of ench mine round a cleat close to the minet in casa ithe lowerige line should carry amay, This tarn must of cobrso, be cast off at tha mord "SStand by to lower a way."
Watch broys shauld bo attached to the two end mines of lines of minas after slinging-one number phould be detailed to see that these bupyss pay out clear and that they do not foul the towering lines.

Laying out Observalion Mines.

Lines of mines must genewally be laid across the tide, therefare it is desirable to lay them when it is slack or slaching. The majority of the mines should rif possible, be slung ond the upstream side of the boat, whick should not exceed a speed of 3 knats while the mines ane heing let gro.

Laying aut a line of ground mines.

Plate XXVI, fig fo, illustrates the lasing of a line of ground mines with long lowering lines end hooksm Nu, 1 has gust been laid, the Jowering line is laeing hauled on board aggin, while No. 2, liaving been dawered' "ta the park", is being lot go pos No. 3 is slowly eased down. As each mipe is lowered; it takes down with it some of the tripring chain sad aable. The stopp should be so placed, and of arah strength, that, the shain and cable do not run out in a heap ms $_{\text {s }}$ the miap is lowened, but are stretched out by the steamor before reaching the bottom.

Large ground mines are not used in depths grieater than 60 feet. The denth of water at the time of laying will usually be lass than this, fo thret there is little difficulty in laying out thepe mines at the proper intervals.
Laying out lines of buoyant mines.

In Plate XXYII, a line of buoyant mines is shown as peing laid out on an even bottom in 70 foet of water in one oparation.
. It will be observed that the intermediate tripniagi chains paust ve 120 fees long to get the mines 100 feet apart po the battom. No. 1 paine is laid; No. 2 has just been let go, its sinker hawing been lowered away when No. 1 mine-case was let go; No. 3 sinker is being lowered away smartly, so that the trippine chain mey bo stretched out before No .8 case is let go; No. 4 mine is on the port side of the vessel.

In depths oves 70 feet, of in shrong tideat or whepe the bpttom is very uneven, it is a difficult matter to lay these mines out in a string in one operation, po that they shall bee at the same fime properly spaced and at the right depth. Also; in depths of 100 feet and oyer, it is a diffioult operation to pick up these mines When counected up in tho ordinary manner (uide plate CXXIII, Part I.).

Other methods of laying buoyant lines of mines in wery deep water are being tried, with a wiew of overcoming 却ese diffipulties.

One method whieh has so far given satisfactory results is as follows:

The intermediato cables are cut to a langth of three times the depth of waters so that there is plenty of slack between each mine.

The tripping chains are cutt to a length off $\mathrm{c}^{2}+24$ fitw and arte stoppered to the intermediate cables as with E.C. mines, and do not stretch from sinker to ginker. The end mine is laid by obsetvation, or to a buoy, as usual. The moment for letting grollthe remainisty mineer sis found by means of a distance line, whiol is uftached to the watah bnoy on the end mine and allowed to murl out ffom a coil in the stert of the mbowing steamer: The 'r distaxice line ${ }^{\text {" }}$ should be of grass or coir rope, hand the marles on it should sllow for the distance apart of the sinkerst as they are sjung on the vessel'e sides. The plan has been tried in. 0 f feet of iwaterd the mines being very accurately spaced.

The Royal Navy lay down the rule that when laying lines of mines across a tide-way a thitrkitig thoy should be previously laid for each mire position. Buoys can be laid very agtoventely by means of a distance line of grass rope attuched at the proper itrvervals to the rope itself. The sinkers should either be tet go by hand at the proper moment, or the distance line can be amannger to release buoy and sinker at the same instant.

Before laying a line of mines to buoys laid in this manner, the distance line should be removedy The babys should have pleaty of fitoyancy, atad the trootitig limes should be little longer than the depth of wetter. The lines of minles, commected upin the manner just desoribed, should be laid on the downnstrean side of the buroyw.

It is of the tutmost importance to know the exact position of the end mines:' 'This is least duno by attraching iwatult bubys by means of light coir lintes, which will float matil dralgged down. The last feot or two of the broy line mext the thine may be of strong spun yarn, so that the buoy and lite waly bo recowered by breaking it when the plositions of the mite has been observed. It is not stefe to trust to any other method of neting the position, as mines may be dragyed some distance dfter being let go.

The buoy-line must be led cleit away from the lowering line, and one man shrolda pay it dut taut as the mine is lowered, throwing the buby ws far awsy from the vessel's side as le can when the mine is let go.

The chief poiuts to be attended to in lelyingtout a line of mines when once slung, are, to take plenty of tinee about i t, to see that everything is olesr for fuming out, and tol lower each mine in succeession at the proper time.
trourd mines slrould be lowered away. gradualby "too the mank" as the predvious one is let grt, so that the intermedidte cliain and cable nady bo gradually stretched out; at the same time care must be taken rito to hold on to the lowering line to longh or the mine may be dragged along the bottom. Torohviste this, the first mine is sometimes let go "by the rumi" the remainder being lowered awsy as tésuml,

Laying out broyant lives of mines correctity is one of the most difficult operations in submavine mixing work Low water, dlack tide, is the best time to lay these mines. Squads abould be practised frequently at this woulk beginning. with shnre lines iof two mines. The mines should always be called No. 1, No. 2, \&c., in the order in which they are let go, quite irrespective of what their real numbets maty be in the tnine-fifeld. The men will then
get quite familiar with the oparationa consequent on each arder.

The ordeves for a line of ground mines will then run as follows:-

Lowor away No. 1 to the mark-(paise)-No. t mine let go, and Lowet away No. 2 to the mark-(pause)-No. 2 mine let ga, and Lower away No. 8 to the mark, dec, ; and fon a Buoyapt Thime of Mineas wilh shont lowering linea: Lowor away Nq 1 sinker-(pause) -ND, 1 mine let go, and lower away No 2 sinker-(psuse)-No. 2 mine let go, and lower away. No. 3 sinker, \&c.

Laypig Odt Mines on the Line Systejr.

Drill forlines of mines.

The party will consist of 1 non-commissioned offider and 2 mien per mine, under the command of an officer or senior non-commissioned officer, who will give the executive words of command.

Duties of Numbers.

No. 1 superintends his party, repeats the words of command given hy the officer in charge, sces that the yarious numpars perform their duties carrectly, At the word "stand by to lower" away," sees that the lowering hooks are unkeyed, and proper lashings cast aff. At the word "lower away to the mark" sees that lowering lines are properly eased off. Ac "stand cleay" seas that all men are stamding clear of all rinaning gear, statious himself with the axe near the weight, and sees that all goes clear at the word " let go."

No. 2 For Line of Ground Mines, Takes up position lpy No. 1 mine. At the word "stand by to lower away," be unkey" lowering hook ant casts off lashings, then assista $\mathrm{Na}_{\mathrm{a}} 3$ till the lowering hook disengages itself.

For Line of Buoyant Mines. At the word "stand by to lower awoy," unkeys lowering hook, casts off fout lashing of NO, 1 mine, assists No. 3 until lowering hook disengages, then inakes ready to let go head kasking which at the word, "No. 1 mine let go," he lets go, overhauls, and coils down.

No. 3 takes up position by No. 1 mine or sinker. At the word "stand by to lower away," he prepares to lower away. At the word "lower away to the mark," he lowers away gradually to the amount ordered. If the lowering hook has disengaged itsolf, he overhauls and cuils down. If the weight be still on the lowering line, he will at the word "No. 1 mine let go," throw the lowering line amartly off the cleat, overhaul when cleara and coil down.

No. 4 performe the same duties as No, 2 for No. 2 mine.
No. 5 performs the same duties as No. 3 for No. 2 mine.
No. 6 and 7 the same for No. 3 mine, and so on.
All nambers assist in payiug out the cable as soon as they have performed the above duties.

Raisng Mines.

The steamer receives the end of the cable from the junctions-

Laying out Ground line of mines in 50ft, of water

land 2 port side; intermeatiate cabls and chain betmeen 2 \& 3 taken round bor outside \& under joggle. "Noz letigo", "Lower amay IT" 3 to the matrk:"

Fug 2.

box boat by means of a thitow-line, and at the same time heaves a throw-line back ta the boat in exchange. If more than one mine in a group is to be raised, it is well to lsegire with the mine last fairl ditu, as the cable is then more likely to come up clear.
The cable is laid over the joggle or fair lead, and is coiled Aown in a convenient place or on expanding drum, The vessel must be mancervred by the coxstwaln so that the cable comes up easily; she must not be allowed either to over-run the cable or tet broadside on to the lie of it. The cable should not he hauled in by means of the steam crab unless all other means fail, and then a rope; stoppered to the cable; should be passed. rotind the barrel ur drum and not the cable itself.
As soon as the end of the tripping chain is reached the fourfathom lefogth of chain is shackled on if requirete; and is passed four times round the barrel of the crab or capstan, and the minecase or sinker is hauled up to the joggle, the stops on the tripping chain being cut as soon as poseible. The cable must be carefufly kept clear of the chain while the weight is being raised.

A stopper is kept loosely on the tripping chain at this time in case of anything parting.

When the weight is up, the derrick tackle is hooked in so that it may be lifted in board. Where vertical capstans are used it is well to stopper the tripping chain and remove it from the barrel before putting on the derrick' fall to the latter. The capstan engine then works in the proper direction suited to the "lead", of the slide valves, and all chanco of a foul tripping chain is avoided. The practice of passing the fall of the derrick tackle round the drum the reverse way to the tripping chain is not to be recommended.

As soon as the sinker or ground mine-case is on deck, the fall of the tackle is used to get the mine or circuit closer-case on board. The latter should be secured' by one hand as sbon as it appears. To get hold of it quickly in a seaway is difficult, and much time is often lost in trying to hook on the block of the derrick fall. A 2 -in. wire rope pennant, fitted with a stiff lang backed look at one end, has been used with sutiefactory results; the pennant is fitted with a couple of eyes fin hooking on the block when the mine is caught. The hook at the end of the pennant is hooked either into the top lag or the attachment chain; the whole permant is about 5 feet long.

As soon as the complete mane is on deck, the sinker is rolled aft, the nfine slid aft on a sleigh or paunch mat, and the cable coil is neatly' stowed on top of the case. If there are many mines to be raised it is well to have a few extra hands on board to shift the mines and help to coil down cables:
E. C. mines should be raised at an average 1ate of 12 to 15 minutes per mine.

Fery good work can be done in raising nines in hired vessels. Joggles are not a necessity, and are often impracticable in these boats. A good fair lead on one how does very well, and a gaff rigged to the foremast with a topping lift and fnil replaces' the

Raising mines in hired vessele. derrick. In many places steam lighters are used, in which the ioremast is right forward, and there is a tall derrick working aft

Baising from the mine end.
ovar a pigicargo hold; in these Nessela the mines can be picked up over'the side without pap, jaggale or fain lead; the cable is coiled down in the hold, and thesisinker is raised in two pr mone lifts lyy the fall of the derrick, which ugually, gives a lift of 2áa or 30 feet The tripping chain, cau he papde fast to the hoak by means of a Black valll, or max-harieps hitch. The sinker apd mine are lowered away into the hold as soon as they come on board, out of the way.

A mine when awash is ofter picked up from the mine. The beat wey in to pass a chain rynning-npose over the case and allow it to drup down to tha sinkem, thery jerk the noose tight and haul up. The noose is formed by shackling the long dink to the standing' part, the pix of the shagkle being through the long link. This roose or "sugtter" is of great use in mpay cases as an under water stoppering a arangemeat,
The tripping chaids of lines of ground mines are a, oranged so that each mine can be detached without disturbing; the continuitor of thes chain. Screw shackles should be used, if possible, No specien difficulty is presented by the operaticrat

Raising Manes,

Drill for raieing mines.

Duties lof N umbehs whin undier anhenning,

No 1 commands.
No. 2 receives end of cable from J.B.' 'boat, works in the bow in under-rumning tile cable.

No. 3 works just aft of No. 2.
No. 4 works just aft of No. 3.
No. 57
No. 6 Assist in eoiling dothr cable.
No. 7',
Druţ̧̆́s at Mine,
No. 1 commands.
No. 2 hands end of trippiug chain to No. 6, keeps cable and tripping chain from jammingy leas charge of hook of derrick tarkle, unshackles mocting lines dnd tripping ehains.
No. 3 stoppers caivie or tripping chain when requined, keeping a stopper loosely on the trippibg obain whilst the weight is being maised, so amanged that he can tighten it at any moment.
No. 4 has charge of port guy, coils down cablej secures cuses.
No. 5 has charge of ktarboard gryt, coils down cable, secures cases.

No. 6 has charge of 4 -fathon longth amd tripping chuin at the exblycuts stops of tripping ohain.

No. 7 has charge of end fall of derrick taokle, and assists at the criab.

Duties uthen dipembarkint Minks,

No. 1 commands
No. 2 hooka block of liftifle tackle into weights to be disembarked.

No. 3 assists No. 2.
$\left.\begin{array}{l}\text { No. } 4 \\ \text { No. } 5\end{array}\right\}$ Assist No. 7.
No. 6 disembarks tripping chain, prepares branch cable for disembarking,

No. 7 has charge of hook rope, guides weights with it when being disembarked.

CHAPTER VIL.

SIGNALLING.

Contents.

Indispensable for submarine mining.-Classification of signallers. -Militia and Volunteer signallers.-Miscellaneous signals. Speed. - Accuracy.-Principles of visual sigualling.-Method of communication.-Sending to 1 wo or more stations at once.-Expert signallers.-A.pparatus and method of use.Large flags.-Small flags.-The lime light.-Constituent parts of.-Uxygen gas.- To trim the lamp.-To obtain the light.-Range.-The hand lamp.-Telescopes.-Arrangement of lenses.-Signalling by sound.-Flag drill.-Beginners.Practice with recording instruments.

Signalling indiepensable for submarine mining.

Olaseification of signallera.

A simple and efficient system of signalling is indispensable for submarine mining operations, and it should be available for use at all times between working parties, whether on shore or st sea.

The conditions under which submarine miniug signalling is carried on, differ altogether, in most cases, from those which obtain in army signalling.

As a rule there is only one man sending or receiving, so that messages cannot be written out in the manner prescribed for army messages. Again, it is necessary that as many men as possible should be trained to send and read simple messages. This necessitates a low standard of speed for the majority, in comparison with that laid down for the specially trained and selected siguallers of the Army. A higher standard of proficiency is, however, expected from a small proportion of the men, who should, in the time available for practice in signalling, be trained to the highest possible standard, so that they may be able to commnnicate, if necessary, with the sirgallers of the Army or Navy.

For sigualling purposes the N.C. officers and men of submarine mining compenies are classified as follows:-

Abstract

 as "signallers." Expert signallers. . \{ Class B. Men reachigg the stendard of "Expert "Signalling," viz, 5 words per minute with large flag.

Ordinary subunarine \{ Men who can send and receive accurately mining signallenty \{ a a rate of 4 words per minute.
Men possersing no
signalling qualifi- . All those failhtg to reach the staudard of signalling qualifi-
cations.
The percentage of the last-named crass sliould be smatl, and every effort should te mane to kedep it as totw as póssible,

The conditions oै training and practice obt, votunteér and mifitia synmaripe miners are such as to render 'it necessary to speciadize the work of individuals to a greater extent than is desirable or necessary in the case of the regulars. Signallets in these branches of the Service should be carefully selectod with a view of obtaining considerable efficiency from a fow. Having obtained thits result every facility should be given to the remainder to acquire the art as soon as they are profcibat'in their other $\$ \mathrm{M}$. duties. The specialized signallers shoutd quallfy as "experts," and should attain a hígh standard of excelterce.

It will' be observed that the miscellaneous signals for's ordinary "signallers are reduceíl to'the smallest' possible nunber, and the "method of communication" contains ouly what is' absolutely required for the short unwristep messages that form the great bulk of those used in su5marine mining operations.
"Expert" signallets are required vo possests a more extended knowledge of the miscellaneous signals, the methods of sendiding written messages with prefixes, '\&it?
The standard of speed for sending and receiving, weords, is much lower than that to which army signallers have to conform. The reduction in speed should be due more to the leugth of the pauses between individual letters and words than to a reduction in the speed at which the letters themselves are signalled. If the men get accustomed to send and read the letter's when sigualled at a comparatively high speer, the acceleration of the rate of reading words, due to a gradual reduction of the length of the paquses, is merely a question of practice.

The standard, of accuracy for ordinary \& M signallers is that known as "fairly accurate," in the Mauual of Acroy Signalling (p. 76 et seq) that is to say, 93 per ceut. of the letters in two "test" groups must be coad correctly.

An example of a test message is given on page 86 (Manual of intiruction in Amalling). It is formed by selecting at random the letters of three alphabets and forming them into 20 subdivisions of unequal length - This message only contains is lotters, but is considered equal ta a thessage of 20 ordinary words of an average lengthoi 5 letters.

The stondard for "Expert" siguallers is that known as
 (4805)

Thes total number of mistalkes allowed in the two test groups is therefore-

For "fairly accurate"	11	il
For "accurate"	8

Princrpleq of Traual Siginaling.

Dots and Dashes.

The system of visual signalling has bitt two simple efements, called a dot and a dash, and these are combined in groups to make up the signals necessery to form an alphabet.

The dot is taken as the unit, and the dash represents three times the length of the dot.
Thé pause between each complete sign or letter should be made equal to a dash or three units, and that between words is double, ien six units.

Good signalling depends upon the accuracy with which the correct lengths of dots and dashes and the separatitg intervals and papses are maintained. Whatever the rate of signaming moy be, these relative lengths should be strictly adhered to.
The alphabet in use is that invented by Morse. It is constructed so that the letters of mosit fiequent occurrence in the Maglish language are represented by the shortest symbols, and no letier requires more than four of the elementa for its composition.

The following table shows the Morse alphabet and the few miscellaneous signals dopoted into, the system of Army Signalling :-

Alybaket

Numaval Şigno

> Miscellaneoms Signals.
> The onuly mark of pometubation to be used is the
> frill stop, wiz $(),. \omega-=-=-=$ I II

$$
\begin{aligned}
& \text { (I4 continued suocrssion of doto.) }
\end{aligned}
$$

The Preparaitye Siga is used when communicating with twh. or more stations in sight, to call their attention before sendildg a message. It is also used ta call the attention of an unkriokn station. To acknowledge this sign the receiving station should ${ }^{i>}$ give, instead dif the "General Ariswer," itss distinguishing letter or letters (without the prefix P), and repeat this till the next signel is begua. When used at other times, to be answered "y the General Answer.

This gign is alao the Erasure Shemac. It is used to erase a word or group that has been wrongly sent, It should, in this case, be answered by the Erasure.

> Stop (Aventinued succersion bf: dusshee.)

The Stop denotes the end of a message when sehding tw iwo or more stations, and the puevires signal, the "preparatives" has comenenced it.

General answer, $-a$ T or dash.

Repeat-1-1 (soraetiness called I MI; but the signad is giveg courtiduouky, mat as thrue lettens\%. It is never used alone, but is inmediately followed by the ward prececting the doubtful wodds.
Sigualler's indicater, $\sim-=$ (eommotrly called $A \Delta$), preparative to the ablurexiations our page 86\%, sbould only be wed whot a mexsuge has been commenced. It is answered by the indiotitar.
The Crphicr Sign, ------- $=$ (CO), is used before and after cipher. aroups It is answered. by the iteneral Answer.

The Break Sigial, $=-=-$ (I) , is used between the address and the text of a message, and after the text if the name and address of the samider are to be sightilted.

The rignal $-=-\boldsymbol{L} \boldsymbol{L}$ (VE, bit sent ais one group, not as two letters) dienotea the ciblapletion of a message.

The Oblitematron, - - (commonly called WW W). This slign is uised to erase everything that has been bignailed 'n a messaged and differs from the Erasure sigial which erases bitly a word of group that has just been "fokthgly'sents; it shottd be answersd by L - - - - the Obliterator.

ILethod of Compmurication.
"Obdinary " signaileis aie requilied to know-
(a.) The Morse alnhabet;
(b.) The preparative" siph;
(c.) The "general muswor;"
(d.) The "stop" sign;
(e) The "erasure "and "answer to erasure,"
(f.) The station figo $\mathrm{P}(-\ldots-\infty)$, followed by the distiaguishing letter of the station.

* Manual of Instruction in Ams Signalling.

Method of communication.

In submarine minin, work there are ubually a good number of "stations" in wiew of each other at the same time. To avoid confusion, therefdre it is-necessary that ench "station" and boat should have a distinguishing lettét, which should be known to all hands. The mode of commmieation will then be as follows:-

PA has a measege for PK.
(1u) PA siguals FIK, PR, PK, \&e, until PK veplies with the "! geneval answer."
(2.) Then follow the woids of the message, each wond beingacknowledged by the "rgeneral answat."

If the receiving station does uot undersitatide wordy it stands fast, making no sign, and the sending station repentestle word.

If the sending station maken mistake in semeling worid, it immediately signals the " ecasure," and the lreceiving station answers by "erasure."
(8.) After the last word of the meassge, the sqning station sends the "st.op". sign; thei receiwihg station sends "general answer," sudidRD communication ceasos.

Sending to two or more stations at once.

Whien a message has to be sent to two or more atations at the same time, or to a station with no distinguishing letter, the "preparative sign" is sigmalled un'til all the receiving atations have answeretl. This answer is, made by eaoh atation ejghalling its distinguishing latter (withonth the prefix B); and repeating this watil the next signal is legurd.
"Expert" sighallers sere required to have a move extended kutwiodge of the misoellaneaus signals; and the methods of sending and receiving mwristen messigges, fir which see Apperdix In Royel Engineene Gorps Memorandum, No. 584 , and the Manual of Simy Signadling.

Aatifatheds and Methoid or, Uef.

From the fact that flagsinare visible, but not fally exposed except whend in motipn, the shart aud long flashes ara made:रy the motion of the flag. instead, of by the appearannee and opscruvation of the objepts

When signalling a letder, say, Ry, (n,-), the flashee nopresenting it should be made in ones gontinuopa wave of the flag, taking, particular care that no pouse is made when at the normal position. Thans, to make B wave the flag from a (Plate XXIX, fig. 1), to b (6 g .2), back to a (fig. 1), and without any pause down to c (fig 3) ; slight pause at c (vide instructions for making a dash) back to 9 (fig. 1), then, without pause, to b (fig. 2), and back to the normal position a (fig, 1),

A pause oqual to the length of a dash should be moade at the normal position a (Plate XXIX, fig. I), betwoen each letter of a word, or group of letters. When the word or group is flpished the flag pole is lowered, and the flag gathered in with the left hānd.'

A slight pause should be made at the normal position, before commencing a word or group.

FLAG SIGNALLING.

Figs.
Fug. 2.
Fug. 1.

TELESCOPTKS \& FIELD GLASSES.

dIAgRAMS SHOWING ARRANGEMENT OF LENSES.

Fig. 4

Fig. 5

$$
3 \sqrt{1} 1
$$

In receiving a message, the flag should be lowered and grathered in uratil required for answerivg!

In order to keep' thit flag always exposed while mowing it acrobs the body' to form the flashies, the 'point of the poles should be rade to dekcribe hu ellongatet figure of 8 in the air: . 1.

The pole'should bo kept as upright as possible while in motion, the point aever being allowed to droopito the fromith This gaust be particularly attended to after signalling a dash.

When twa tor more dashes come together in a letten, some Nighallers we apt to shorten the waves by not bringing the flag back to the normal position between each dash.

This habit must bes carefully gitarded againstry tas it spoills otherwise good signalling, destroyiug the idea of time, without which it is inpossible either to send or read correctly:

When signalling to a station the flagman should stamdisquare with it, so that the motions of the flag may be at right angles to the visual line between the two stations.

The large flags aro 8 feet square, made of a sont df muslin. They are of two colours, vizu, white with a blue horizontat stripe, for use with a dark backiground, and dark blue, for use with a light bakkground. 'The pole is foet 6 inches long, 1 inchtir diameter at the butt, and tapering to $\frac{1}{3}$ inch at the top.

Small Flage.-These are of the same chaterial sas the large ones, but 2 feet square, and with a pole 3 feet 6 inches long, 4 inch in diameter at the butt, and tapering to $\frac{1}{2}$ iuch at the top.

The drill with these flags is the same as that described for the 'otherte, except that'the hands must be held higher and closer together, with the strme nearly straight, the lefit hand not to be lower than the chin. The tendency to allow the elbows to rest on the chessit must be strictly gliarded againsto

The distatioe at which sightals made with these flag's caty be read, and therefore their value an savirg signallers the labour of using the larger flags, depends'on their 'beiny waved-through a wido circle. It is therefore oskential that signallets should be drilled to use them catteletly. They should be waved well over the head. With ohear sendfing and under favourable conditious these flags can be read with the ordmary Service telescope at distarices up to 12 miles.

The Lime Light.

This light is derived from a pencil of lime raised to a white heat by means of an oxy-hydrogen flame. It is obtained by cansing a jet of exygen gras to pass through the flame of a mpirit lamp on tor the exid of the pencil.
TTe apparature connsists of the following parta:-

1. The body of the lamp.
2. Obscuring shutter with key.
3. The spintit ohtamber.
4. The pencil-hulder.
5. The tripod.
6. Gas and preabure bags.
7. Gas tabing:
8. The body of the lamp has on upening in froist to take the
carribge contaiving the lensl arnangenant for emithing paralle? rays. This cousists of two planoc-consen lepsas, each 3, inches in diameter, placed sbout half-ap-inch qparit with the convex gurfacos towards one snipther, so that both, the plape suifeces are outwards; and it is immaterial which and of the garkiage is wiowredinto the opening: There is at hole in the back of the lamp ta néceive the pencilelioliden. The lamp has also o parforated cap, a binged doot, and a handle.
A. Obscuting shatter and key. Between the lighat and the lens is. a tnetal dies, which is raised and lowered to expges and shut off the light by means of the key on the outaide of the lamp. This they is copered with ivory of other nan-conductor of heat. It is acted on by a Apring outside the lamp, which maintains the shutter in the obscuring position.
9. The spirit chamber han a bumer in the middle for a cotton or sponge wick. Ailang the top ρ § it is fixed a conducting pipe for the gas, which terminates in a pozqle projecting iuto the spirit flame. There are slsq, two ping attached to chains, which serve to fasten the body af the lamp securely to the top of the apidit chomber. A sighding tube is fixed, on the spirit chamber.
10. The pencil-holder is a metal clayw for holding the lime pencil.
11. The tripud ar atand is the same as that of the heliograph.
12. The gas hag is made of waterproof matorial, and will contain about $3^{\frac{1}{4}}$ cubio feet of oxygen gas. It has a tap and a nozzle to which the tuling is attached. The pressure bag is of canvas, and should save from 12 ta 14 lb . off, sand or garth put into it ou the spat just before, being, required fer use.
13. The tube is of elastic indiarubber, $\frac{7}{8}$ inch intornal diameter, and connects the gras bag: tap with the oqudpcting pipe passing outside the spirit chamber. The tap if, turned on, frll, when the ghas is required (the pressure bag having first been placed an tqp of the gas hengh, and the supply rof gasis to the bumer is then negulated by another tap an the conduating pipe impoedintaly above the nozyle which receives the tuling.
NubuThe lime penoil should hempred from the holder when the eignaling is correladed.

Oxygen Gias.-The oxygen gas is obtanimad fram a misture in the following proportion (by weight) viz. :-

> Ohlorate of pobsasl:
> (Grasulated) binuxide of manganese

Thee binoxide of manganesu is not a source of oxygen, but its presence facilitates the decomprosition of the chlorate of potash.

To make the gas, put about $\mathbf{1} \mathrm{lb}_{p}$, or about twpothirda of , a
 having previously sapewed the cap tightly home.
The fire should be a slow one, made of wood, not of coal, which injures the retort On no ascount strould a fierce fire be allowed.

Before placing the retort on the fire, the tap of the gas bag should have been opepped and comnented by means of a piece of elastic tubing to that part of the wash drottle marked "out," and a separat piece of twhige, attached to that part of the wash
bottle marked "in," is held in the hand, atind as soon as the gas loegins tha come it is sonnented to the tube of the retort.

Noma-The retort muat be thoroughly divy, and the potash well mixed with the mangamese,

The gas will now pass through the wash bottle to the lagg.
Shortiy after the retort has leeen placed on the fire, steum will be given off, but it is easily distinguishad from the oxygen by bolding ? piece of burning wrod (withont flame) to the tabe of 1he retorts when, if oxygtan is passing, os brilliant white flame will be produced.

The wash bottle should be about half full of cold water.
The tubing and the wash bottle should be blown through bofore ase, to make sure that all is clear.
If the gas comes too freely the retort should be taken of the fire, luat should be placed in a warm position near it, and replaced whan nelcessary.

Not more than 1 lb of the mixture for making the gas should be put inta the retort at a time. The gas from 1 lb , of the mixture will fill two bage. When the igas has ceased, the retort should le repoved from the fire and alluwed to cool; when cool, it elopuld be washed out with water and placed on the fire to dry ready, for ase again.

Tb Trim the Lamp

1. Remove the body of , the lamp from the spirit chamber by taking out the pins which secure it, and lifting it, off.
2. Unpin the gas-pipe aud take it ofl, Takp a piece of cotton wick about 7 inches long', and thick enough to well fill the holder without packing it too tightly. Lay the strands carefally together. Insert the wigk into the holder, without twisting the strands, Out the wick nearly flush with the top of the holder but leaving a feew strands projecting $\frac{1}{8}$ inch just where the gaspipe enters the holder. Re-fxx the gas -pipe, beddiag the roakle in the projecting strands of the wick so thist it, may ho wrapt in flame when the spirit is lighted. Now press the strander in front of the nozzle right and loft of the orlifee, forming a little ohannel to give free passace to the jet of gas. It is most important that theme points should be carefully attended to, for a yery slight obstructidn to the jet of gas or ange exoess of , lame will mar the light,
3. Fint the chamber with the spirit of wite
4. Replace the body of the lamp on to the spirit chamber, taking care that the oxygen jet points towards the lime pencilholder.

To obtain the Light

I. Light the spirit lamp.
2. Place a lime pencil about 1 inch long in the holder, the end next to the lens having been cut or rubbed fat at right angles to the lopgere axis of the pencil; put the pencil in position, and allow it to heat ip the spirit flapae for a short time.
3. Dquyrect the gas hag by a pioq of indiarubber tubing to the conducting pipe in front, of the epiritichamber.
4. Place the pressure bag on top of the gas bag.
6. Trurn on the tap of the lamy and axducti the lime pencill by mpving the holder baskwards or forwards, by a bwisting motion, till the jet of gas impinges oy the end of the lime pervil, and regrulate the dxygen wap tidy jlist sufficient gas passes through to raise thecerd of the pencilito an interse white kent,

The intensity of the light dopsenias din the exact proportion of the two gasesiit the flame that is brought to bear ons, arid to completelgo caver, the end of the peucil In makint this adjustrment the sigualler should look at the reflected image in the letis. If the end of ohe penbil is daik, it is evident that the gas flame does not atnike its In this caks either ble poneill sis tob far back, or there is nut enuugh gas triried on, of itisthay"lue that the pencil is 'too far folinward'sutil that the gas'Etrikes trie bottons of It. If the end of the paicil is bright, but with a derk spot in the middle, it is too far forward or there is too mach was tormed on. If the uppen part be dark ent the ldwer bright, the petiol is too far fibrwand. If the reverse be the ease, it is ton far' back. If it be foumd inapossiblento geti aighod light by any 'adjustment of the pencil and the supplyy nfloxygren gas, the fauler lies probably in the supply of liyduty dit from the 'spirit, flame; there is eithrr too much or too little, i.e., the wick is too high of tdo low. Particular care must be taken natito have too much flame.

When everything is in onder, the end of the peucil should, be about why in in reur af thie centre ot the wick, no Hame should strike against the chinney, and tlie reflected image seen in the lens should be a disc' of bright hight of uniform intensity without a shadow or spot over it.

It remain's now fot provide that the greatost posigble amount of this light shall reach the distant statipa "his is done by adjusting the leis so as to bring it into proper fogus. Place any object about is feet in front of the lantp, and adjust the focus witil the smallest possible circle of light, is obtained. T'bis will generally be about 18 inches yi diameter for the abpe distance. is The light is notw ready for use:
It whis desctyption of the necessiany paints to be atteuded, to in the adjustment of the lamp, it is taken for granted that the ga.stipe has beon properly bried and bent so as to throw the jet of gas in the right direction, that is', on the centre of the face of the pencil. This adjustment requiring great nicets should be tested befpre the issue of the lamp, and the signaller should on no account be allowed to tatmper with the gas-pipe.

To maintaiij a gód liglit when sigviallug, constant attention must be paid to the lime pencil, 1st, to, see that it is kept in a proper position with relation to that of the oxygen jet; and ind, to watch whether it is cracking; if soc, it generilly crambles away and must be teplaced; as squebdily as possible, by a new pencil. The supply of gas must bo earefully regulated when in use, arod ectinomised as muoh as possible wheri yot signalling. The direction of the lame must alive be abtentiet ot, to aede that it, is always kept on to the pecelving station. The alignment is obtained by moons of the sighting tube, or pielkets, ass describted below.

The gas bag tap renains turned on so long as there is my gas ii the bag... Duringt a cessation of worlo the tap at the lamp should be 1 hrned ofif, aythetholttlinuphantale bag yemoved. When it is required' to work thedhmp againathengressure bagoshould be placed on the gats bagilitithe turnididgum the tapsatithe lamp.

The range of this light exhoeds 20 miles in thingtand.।
When practicable tie direction of the distant station should be fixed as accurately as possible by day, aird marked with pickets. The topg of these , pickets must be in exact jine rhatypeqn the proponsed position of the lamp at night, and the distapt, Atatiop \therefore Whan, aligniag the lamp. hy means of the qighting tulue9which is fixed to the top of the spirit chamber, tho signaller luofks throang the pin-hole at the rear end, and, turns the , lamip until the fistant light is brought fully into the field of the tul良中

The Find Ldithp.

This lamp is an ordinary bullseye with a flat double "1 12 din!. wick fed by colza or other vegetable bit. Wineral oil must nat be used. It is provided with a disc. A key on the outside operis or obscures the light.

The trick should be placed withrita etige turned towards the Indilseyer Care must be taken riot to stop whe mupply of air to the lamp through the air-holes at the bottoris. "isi-

The stand for this lamp consists of a tripod, the legi of wich fit into each other, It has as metal knob with studs which fit Jnto the base of the lemp.

Telescopes.

It is nat only necessary that mignallera should tharoughly umderstand the use of Geld-glasses and telescopes, but they ought further to be able to clean the lenses whei; rcquired, and to replace them in their rieoper cupsitign, To enable them to do this, diagrams, shaping the pruangementif of, the lenses in each of these instruments are given in fig. 4. Plate XXIX.

The portion of the telescope A B forms the eje-piece, pqusisting of an objeotrglass an a diaphzagm d, an amplifying lens a, a field-lens f, mothegr diaphragm α_{w} and aye-lens, w. The objectglass of the telescgpe is, shownat a. Thyif glass consists of.two lenses, one a thin double convex lens, and the other a thicker nlapouconcage lens. One copres. surfice of, the former fits jnto the concave surface of the latter. Care must, be, taken to replace these lenses so that the thicker one hasi, its playe or flat surface towards the eyes, while the thin lens is qutsije towards the distant abjocte The ourves of the lenses are exaggeratod to show clearly the side phat should he, turned, towards the eye E when replacing them in tha tubes.

The arrangement of lenses shown in fig' Phe Plate XXIX, consists of an object-glass 0 , diaphywgin and arin eye-piece e.

It is well to remember that ith replacing the object-glass of a telescope or field-glass the quwnia side shand sdways be turned from the eye towards the obpult to he viewed:

The glasses should be clearell with chamois leather or blotting
paper, and should be remover fnome the turbos as soldom as poosible. The interions of the tubes of taloweopes and fieldglasses are purpasely diackened andi, inust not be cleaned. It. opeaniag out a telesoape the tuhas should be slightly twisted round nat drawn ont stroight, and the samme should be done in shutting up a telascape.

Stigualding by ISomat

Signald may also bo mady by petund with fonglef, fog korths, steam-whistles, do. They may be made with short aud lorg colls, ropresenting dote and dashes, or, wilt any instrument that will give two notes, they may lise givelt with a highet note representing a dot, and a lower note represertiong a dasti. Wheré the signals are'given with one note the time must exadificorrespond with that laid down tn the above instructiong. 1st Exércise…

On' the
Command 4. Eadl ins Number by Tаमевя:"
Dis the Command

"Prifare

 for FlagDetht."

On the
Comintand
"Fall in-
Fumber:"
On the
Cbotimanat
"Plesparte
for Flag
Dritri"
«МАвся."

On the
Command
"Pirepare to Sigyal."

If the Squad numbers 10 and under,
Fall in, 矫 right, anglay for thla wind in single rank, flags at the onder gathered in at the right side and, number off by thticee.

Nos. 2_{1} and 3 turn about, and on the word "March," No. 2 takes G.paces to the reaw, halt and front; No. 3 takes 12 paces to the rear, halt and front.
i1) It © optionar to the Ihstriketof to turn his Sequad Halflight, of 'in any direction actording as the uina may be slowing.
If the Squad number 20 or more, fall in in two ranirs, files 2 paces apeart and number.

The whole tarm obout, except the Night, file front rauk and en the wotd "Mutth!"

The Feft files frort rank take $\hat{6}$ paces, hait and front.

The Rigtht files rear rank talle 12 peces, halt and frotht.
TThe' lefit files reair rank take 18 paces; halt and front:

Thie flag pole is brought diagonally acrooss the boaty, pointing upwards to the left.
The right hasu graspsi' the pots is inches below the flag, which should be gathered in and held in the holpow of the left hand.

The tight foot is separated from the left 12 inches to the righti

Cafer shon 10 be tacken that in this position, thy Signaller do. ces , wat hold the flas too kigh-aboult the midd lf of the body perng high, essougt.

On the Command "Readi."

Dots by Numbers.

On the Command "Qns."

On the Command "Two." On the Coramand " 1 Dот."
Q_{n}, that Comanachad
 Dinalum By

Raise the pple smartly with the right hand until it is in line with the left shoulder, seize the butt of the pole with the left hand opposite the mentre of the hody. In this position the left elbow should be close in to the side, the left forearm squaro with the wrist rounded puiwards, and held 6 inches Form and 6 inehes in frdat of the centre of the body. The right hand will etill remain 8 inches below the flag, but without constraint.

The pole should be held liilgh enougtr to see underneath the flag whee in métion.

In this the normal position the flag pole sliculd make an angle of 25 , with a wervical line through the centre of the body

Befors pheveeding any firwher the Itostructor showld pay atrict wattentiom to thi Signallere in this position. Ho should see that the right. hand is not held too high, that the left fownd is not cramped into the body, thet the flug is kopt to the angle of 25°, that the SVignallee Loop not lean buack on the heels but ulightle fomband, ated that the flogs wole is not allowed to d'oop to the front or rear.
Wape thle flag from the normal position to the corresponding position on the oppositeswide of the body.
cirvich attsantion thow be paid in this practice to the way the refigmoller farmen his dats.

1st. That he qusceribea a, curve in the air with the Alag pale , apyd docs not brong it straight frome left to right, which causes the flag to nungo, rotud the pole.
2nd. That the left elonnc is kept close in to the body.

Brivg the flag back to the pormal position.
These mations should be constavtly practised before the Signaller is allowed to make the two combined.
Wave the flag from the permal position to a corresponding position an the appesite side of the body; and hack to the normal, position without any pause.

Care should be taken that tha Signaller in making the dot, makes the point of the pole describe an elongated figure of 8 in the aim

When the dat is made fanipctly then practice making 2 doter 3 shofa, and, them a succession of dots, seeing that nop paysfor it mate when coming back to the sornal positiow, sa that the wave is contintuous.

Return to the normal position.

Wave the flag froma the normal position till the point of the pala meardy touches the ground (or the opposite side of the body), the right arm

On the straight, wrist rounded outwards, the left elbow

Command
"OAE." close into the side, and the left hand not allowed to drop' or come across the body:

The Signaller should be taught to keep his eyes straight th the, ming init on ne account to let them follow the motion fi the Alag, also to keep his body pexfectyr upriqht, and not lean over to his right in making the dasho.

Bring theflag back to thenormal position smartly,
On the Command
"Two."

On the Cormand "1 Dask." in a straight line, and not with the curved motion.

Care should be takon to graard ayainst the tendency to bring the flag too fur lack over the left shoulder. It should stop at the angle of 25°.
Wave the flag from the nomal position till the point of the pole nearly touches the ground on the opposite side of the body (straighten the right army, make a slight but distinct pause, and back to the normal pasition.

A succossion of dashes should then be practisect. Sub no pruse made at the normal position afier each dash.
On the \quad Return to the normat position.
Cemnand
"Steadr."
In.rigriaNing, the puint of the pole should tot be allowed to droap to bike frant or rear.
It is good priactibe to teach the Signaller to nake his dashes weith the right arm alorit, keeping the left bahind the beck.
In sigrialling steo or more dashes, the signaller is apt to cut his dashes short.

This shouid be strictly gharded against.
Constiont practive of dasties by numbers is the best way to obviate this.
 ing stbaullet's'to the 'thtydottance of makint' the dots and 'binshes peryectly by numbers, if alloweth' to out either short, they will invariabtif make very bad sénders, ath consequenely their signalling will be Viard to read.

The Sigtarlef in being taught to make a letter should make that letter quickly, and on no account slowly; or pausfag" between the eiements, which tend rathey to make the Sighatler slow throughout.

When instructing, cach letter must be made sharply axd lantier panise allowed between letters; this is the better way of teaching, as it gives the Signaller a more correct idea of titite.

There is only bne rive common to all signallitg, and this trme should beltalnght and soquited from the commencement.

2nd Exercise $\left\{\begin{array}{l}\text { "One dot, E" " } \\ \text { "One dash, T" } \\ \text { " Dot dash, A" } \\ \text { \& } \text { "., \&cc. }\end{array}\right]$ Executive words of command.
Nore. - As soon as the class begin to know the letters, the executive word should be changed to "Signal E," "Signal A." \&c \&c.
"Order flage."
"Stand at ease."
"Stand easy."
"Attention."
"Signalling groups on the word 'commence'" (a caution). "J.F.R.M., commence."
3rd Exercise $<\mathrm{On}$ this prord the squad will (1) assume the normal ppsition, (2) signal the letters named, (3) return to the position of attention.

Small Fiag.

The drilliwith these flage is the same as with the large, except on the qampand
"Ready."
Bring the flag across the hody as with large flag, the left hand in line with the chin, right arm below the eyes, both elbows free from the body, flag pole grasped firmly but not tightly, and both wristh turned, outwards.
Note, Tm making the flasht, whe paint of the pole should, aysturust below tha right shoulder, awd, na louspy; aud, the as mas showld not be. allowed to driqp.
Beginners may also, be taugh the symbole by means of the hand lamp which is a very grod mathod. The lamp need not neccessarilp be lit, and, if used at short diftameefo, the men can be taught to read ., by, spunch, pud right simaultaneously. By this meats, the importances of the elempat of timze in Morse wignalling is impressed on the men. The lamp can also be used, of course, for teaching ly sonnd, alone, or by sight aloned The use of the lamp also permits of men, being taught at, night, when flag drill is, out of the question.

Where recording instruments are available, practico with them is a rery yaluable aid to visual signallingt Bx the use of the recorder, the learner realizes the tendency to make, the indervals between the dots and dashes composing a word incorrectly, more especially the tendency tp, lengthen unduly the intervak succeedipge a dush.

APPENDIX I.

WORKING RECORDS AND PREPARATION OF STORES.

The mine-flold having been surveyed, the necessary platis and chamers prytaited, add the soherne of defence inally approved, the details for and of the propahtation of the'meetessary stores for the submariue mining defence will be recorded in the books and forms authorised for the fixrpose.

It is nuefebsaty to divide the submatine mining records at the station into two distimet branches
(1.) Referende records.
(2.) W'orkiag eletails.

Reference recorde.

(1.) Referembe 7Recoyds.

These may be divided into store reebrds ((a), and defence remerde (b). Woth we required for reference, but are liable to elmanges and alterations of differont characters.
i b (2) Store ivoond ibclude ledgers, vouthers, establishment of stores, remains and inspeatioh returns, lists of veshels and liods with their stores, recotd of weight and testis of ldaded mines, stores issured ot allotteld to teptrtronask, obberving statione, \&ce! record's bf cable teats.
(b) Definae Recorthe will show the actual or proposed distribution of the stores' nededsary For each mine-field, their staite of prepartaion and the scheme of mobilization. They inclede the folldwitg plans and papers:-
Survey Reastas, inolulligg 'triangulation, soundings, field books, details connected with alignment marks and ownerslikp of layd.

Corfidential plandib of defertee. (Plahs A; B, and y, see peide 㛺。)

All confidential doenhents cohtrectetly with stheine of defence, such as phopnsed modifications; stores requirect to complete authorised scheme; buildings requircul for the same; detailed account of boats, cablee, electric light gear, \&c., obtainable locally; standing orders for mobilization; detail, plan, and account of "friendly channel."

Mine-field record buoks, containing the details and forms necessary for preparing the stores for each mine-field, as well as a record of their state of preparation.

Fitting room records, containing details of the fitting and testing of all defence apparatue, junction-boxes, detonators, disconnecting fuzes.

Stores used for practive and instruetion shoulde be separated, if prossible, from thie other storet, matd separate rectordis should-be kept for practice mine-fields: (This does adt, of course, refer to lowering lines, lashing tb, beove, \&c.)

(2.) Working Details.

These are required for distribution to those in charge of the various opetations connected with the laying out of the $\mathbb{S}^{\prime \prime}$. M defences, and will consist of copies and abstracts from the necessary reference records. Thites, some of the details will bo copied out into note books or on inventory bodrds, and detiers will be better given in the form bif dagrams or plans. "For use out of doors and on the water, waterproof paper and ink is recommetided (the lintter can be made from Judson's dye mixed with a little shellac sud borax). Diagrams, not necessarily to stale; should be fréely used for illixstrating junction-box counections, disposition of cables in tarfis and tretiches, method of storage of mines and appatatias, \&c.

The workitg detalls to be prepared are as follows:-
(1.) Consuecting up, order of getting out, and details connected with thain, group, and brauch cables. Detailś of pach mine.
(2,) Slinginga Notes as: to the arrangements found to be mart suitable fari expeditipuely getting the mines on to the laying-ont steamers. with full ciomplement of, men and boats.
(3.) Layging put. Warking charts will be rqquited fori each layingequt ypseel, showing appearange of alignment marks, and method of finding , the position iof each mine; also a book containing general orders for conducting the operations and a record of work done each dayn
(4.) Jundtion-bod boous, Note books with diagrams of connections in every box in the mine-field and details for getting up commuinication with the test-room. List of stores to be carried in the boat.
(5.) Alignment diagrams, and orders for aligument party.
(6.) Test-rodms and observing stations whil' require diagrams of the disposition of batteries and cores; orders for testing bud for routine in action; plans of mine-field; former focording system and geveral tests; diaries and uote books; lists of all stores ifsmett to them.

State of Proparation of Subnuarine Minzigh Defences:

The preparations made in peace time should be pushed as far ss pussible, so that the worki to be deme ta contpletei the mire diffencer at the last monent may be a mưnimum; corsenamb practice in peace time in layjiag eut partions of the defence will wrad to still further lessen the timeo required for this. Much will deepend, however, on the system on which the stores are prepared, and the itepe taken to record the state of preparation, and the scheme of mobilization.

Mine-field record book.

Withz the ohjecth of securing an tnifforn method isopeopating. and rearaliag the state of preparation of the defencen, then thine: field record book will be u*ed atiall statious, ing conjunetion with the other hooks and forms alrealy detailed.

A separate bnok will be kept for each mine-field so that there may be ne confusion.

The forme hitherto used for the proparation of mivees and Giables have been madined s, wh where necessary ale placed ou the right haud pages of the hapk, the lett hand pages leeing left blantr for descriptive remarks and diagramse ons TThe letails of apparatus, relaye detonptors and diacompecting fizes, electrical and hydraulic tests, are not, recorded in
Fitting recorls. this Dook, All this information will bo afforded in the "Fitting Records," which should, ho thent in the fitting raque, canf which will slow the existine "tate of preparation, and, necord, of periodical testis, both electrical and hydraulia y Thesem fogms must be very carefully peepared and kept up, and the nerioglisad tests must be made under the inmediate, sugervision of an officer, who will be held responsible fur their, correctpess. ।

Iumpizicatión or \$torre:,

E.C. Mines.-The electro-contact mines will be divilded up into groupe known as $A_{n}^{3} \mathrm{~B}, \mathrm{O} ;$ stc. The letter I will not be insed. With four mines to a group, this will phovide tor 100 E.C. mines. If there aretmore' than that number 'of' E.C. mines, the lettering of groups will continue $A \mathrm{~A}, \mathrm{BB}$, \& c . The individual mines of a group will ber known as $A_{2}, \mathrm{~B}_{\text {\} }}, \mathrm{O}_{3}$, \&c. The mines "dHould be similarly numbered in each elotipy according to theind driangement th the mine-fied. Thus-

This arrangement will tend to simplify matters and reduce the chances' of mistaked in the junotion-loox konts. The labels for branch cablee of re. . rinines need oniy bear the numbers $1, y, 9,4$, audd thase labela will be put on in the juuction+bar boat whon the cable is passed in by the keyying-out stechmer.

Ohsamiation Mines.-These mines will be kilown simply iby their numbers. The numbering will eommence at 200 or 300 , well beyond the total number of E.O. mines, so that thare may be no possibility of confusion.
 cuntaining the relay.

Cables. and Corenant All the cores leading froin the therminat batteus in test-rogms, and phserving statichor, whether fo migefield or telegraphic purposes, yuil be numbered copsecutixely in Arabie numevals ma troo cqres heaving the same pumber. This aystpmo of identioneation will conthuy the, the ent of the core as permaneatly laid. In the case of land auif shore-end capes leading from the test-room to the mine;ield this numbering will be reproduced at the copnecting pit or in the connectiag boxes at the end of the shore-eud cable. From these points the mume field cables may be said th cominenge and these are identified differeatly. Eor instance, there may, oe eq cores leading from the terninal battens of a testroug of which, 60 are hed tors gomeatipg pit near high vater, Here ot of the cores might, be allotted to earths, the pther pf poins compected to "shore end" or ahart pieces of muiltiple cable, feading to coupecting boxes in deep water. Of these p, cores, 14 (saz) are contsined in two spare cables, and of thenther, 42,39 are reghited for the mipe-field and 3 for telegraphic pyrgosegs, Alh,these, ifoges will bear their numbers, 1 to 60, at the places where they terminate, whether in the comectiug pito of in the gpapectipg ow jnuetion-bozes at the ends of the "sliore-end." The cables carrying these cores

 zuarks ${ }^{2}$ diagrains shonld be prepared showing the dispudittiven and identification of tall epres inderanevtion with te tet-roomé and obseiving statidns, and should be frept thitg up in theere ypheces, corrected to daite:
 junction-botes at their outor iende.'. Ihdividnal eores of nthiose cablés will be known as I. b, IIN. 4, IIL. 屈, 8 cc .

Group Cables of E.C. mines; whether single or mulitiple; will bes identified by the capitalskettevs of the groups" whicter they belong, the individual obres of malitiple proup callem for dormant
 multiple disconnewing' junctionthozes and their brucys wailb best therchpital lietrexs: of the groups to which tliby belongu

 their proper lengita; the infentilicalion label fory each mine of a grour phovild he put dir in the junctioni-box beath

Cables for liwk ditcuins trill be llabelled " linit,", troglether with the ileartification mark of the mines to which thay leadul.

A woftements, -Permanent marhas slrontrd as a ruld be knowa by their zianes; and urfficiul towisk und their flowings by numbers:

Appa:atus, mooring lines, and disconmectore wrill bewr the identification marks of the mines tg whign, they, belong?

Apparatus will be staread in the panditior. laid desma in Part III. Each apparatus is to he fitted carefully into ints ghyw,
 cross atrain is brought out the equystupe whern ithe: mupthpigai is screwed down. A mark should bo made ou thoth case and
mouthpiece to ensure the latter being scremed dawn in the proper position after priming.

Apparatals yor postitite minces (odid numbers) will be marked with a + sign in andition to the number of the mine ; nitgative apparatus, with a - sigri. The mdithpledes of postithe mintes should be painted black. "hrooring lintes shoula be stamped" writh their lengthis and mipe hutmbers: Circuit cloger cabbess should bear labels showing length and ntmber of mine, and should, if cut, be stored together in bundies of groizps, Interchangeable branch cables for E.C. mines will be matked with their lengths those of equial lengthes wilh be storëd together, Tripping cháins may either be stored with their mintes of in heaps of equal Fengths, each chrair being labelled with its true length. Chain of different sizes must hot be mixed up:
Guncotyon', interded for mitaes which are not stored loaded, should be so arranged and labelled in the magazine, that no delay or continsion may arise when the mines are ordered to be loadet.
The state of" preparation of test-robms, observing sfations, electric light engines and installations, will be dealt with in detail in the chapters referring to these subjects,

Connscting up the Defincesty yor Eraying Out.

For this purpose it is necessary to prowide those in charge of the varions operations with "delatils for connecting in up." These details are abstracted from the mine-field record books into note books, which ahould be previonsisly prepared, so that there may be no delay in assembling the various parties, It is a gaid plan to provide a small "inventory" or "tally" board for each group, on which the details necessary for connecting up the group are written. These boaxds should be hung up in the case store.

The order in which the cables and mines are to be laid out manst be wall, thought out and recorded; and the gear should be arranged, as far as possible, in sccourdance with this plan, which should provide for contingencies of weather, \&c.
The greatest delay may generally be expeoted to arise in comnention with the cablesp expexiadly when the main cables are not laid out. The officer or N.C. officer in cbarge qf the party getting out cables, must have full information as to the disposition of the cablea in the tanks or poonde, and alsa as to the order in which they are to be got out. He should also be reaponsible for the junction-box mooring in connection with each nain or group cable; sud see that the cable, comiplete with its junction-box, sinkers, buoy, mooringes and buoy line, is delivered over. The necessary detnils for each main and group cable may be conveaiently recorded on a page of Army Boolk 236, under the following' heasing asom

> Identification number or letter.
> Class of cable; length; where stored.
> Junction-box; where stored.
> Moaring liue and buay line, lengths and where stored.
> Bnoy, identification and place of storage.
> Sinkers requireti.

The "Mine-field Record Book" and the Store Records will furnish all this information.

Mines.-The officer in charge of the connecting-up parties must also have the details for getting his gear assemabled. This information may he conveniently recorded for each mine on a double page of Army Book 136, under the following headings :-

No, of mine, group, and system of connecting up.
No. of mine case; circuit cldser; mouring lines.
Tripping chain, length, and where stored.
Cable, length, and where stored.
Sinkeyr peightis
T. box or explosive link, where stored.

Watch buoy and line (if required).
No, in order of connecting py, foć.
The mine and cirpuit closer will be delivered over to him seajert up, he has merely to draw in addition the branoh, cheruit ofosen; and intermediate cables, mooring lisiea, tripping chainis, sinkers, explasive links, and watch bubyes as required.

In the loading shed, thase mines not previously completed will be loaded as rapidly as possibile, the apparatus belnuying to whe anina being fitted-in from time' to time as the leading' procerds. The d'y primer shonld mot bei inserted into the a'pparatus until the lading of the mine has been satisfactorily completed.

The operationa to be performed in the fittiag room and testing pit putht necessurily take some time, se the dry primert have to be inserted inty the envelopes, after which the proporlelectrical teats heve to be maden , This work, as well as that of getting cahles out of the prand, can be carcied out by night, if. nepoessany.

On shore the operations to be first undertakenare completing the loudiug, primiug, and: testing apparatus, and getting catt ables, whiles, in the mane field, the cubles are being laid as fast as possible, pligamenta put, ups, and pasitions of junation-boxess \&co:, bitroyed. In many canpes, it may stave time to buoy the prasitions df some of the mine to be laid during the first day's work. TThe friendly chaniel (aee pp. 26, 27) must be marked out the first thing before any kic. nimes are laid.

What :han and

APPENDIX 11.

THE SEXTANT AND STATION POTMTPR.

Thw, Spatani.

The sextant a porterble instrument caprale of measuring in
 two distrantiobjenta. If the angle be greater than 130°, "Hw observationsiare remuredus but for angles lesis than this owty one rapid iobsenyation is necessaryv The plave of the I ind trument
 bye: and theiobserved ebjectst : Thisivequires some pructice, and is the conly diffioulty in theo use of the instrument.

Sextants are made in several forms; the the quitheipleis involved
 - mandedetond fnom whe following ideccriptidny (See thate XXXX:)
 wiad the hovidon gliss sand these are becaumately set at right angles to the planie of the inistrumend, whith comperporads in thiis ithitittrationidithe the surface of the paper. H, the horizon glases' has elither the tapi andattom half of its sufface sillvieredy the other hate geing-franspiarent! This blass lis permaneatly fixed in

 albout un axis set at rught angles to the plaxie of the instrtèment,
 moves over a gradnated arc on which the angles are read affi

It is evident that when the two mirrros H and I are exactly parallel a ray of light from an object X will pass through the transparent half of H , and be reflected back from I on to the silvered half of H , so that an observer looking througk a small eye-hole at. I would see the direct and refiected image of X coinciding in H. When the mirrors are in this position, the zero of the rernier on the "index arm" coincides with the zero of the graduated arc.

To measure the angle between \mathbb{X} and another object P, to the right of X, the mirror I is slowly turned, and when iu its proper position it is evident that the ray of light from \mathbf{P} will he reflected from I on to the silvered portion of \bar{M}, so that the observer at 1 will see the image of P in the silvered portion of H ooinciding with the imago of X as viewed directly through the transparent portion of the same glass. The angular movement of I is mensured hy the movement of the "iudex aru" on the

The SEXTANT.

Proof.
Angie $\mathrm{P} \mid \mathrm{Q}=$ = angle $\mathrm{Q} \mid \mathrm{X}$ congle of vicidence = angle of reflectionAlso arg le $\mathrm{ZIX}=\mathrm{VIO}$ lake away comuruon pare XIY ard angle $\mathrm{YIZ}=$ angle $\times 1 \mathrm{Q}=$ half angle subtended by x and P ab eye :-
 reflection of the object P, the index mirror, and armonly move

 arche divided up rocordiaidy. Th the olbjeot P wete to thel feft

 H, X being the reflectod object: or brewaning the soxtant upside down, when fat would stili bo the reflecte diobject, ail

 case practionlify, tow it does not hliect the puitciple thvolved; and
 duie th this fuct is inapprectiable.
(Him)
This smalk eltor due to the stoserver's eydenot coinchiditg with Parallax. the mentre of the index milrect ia otalled "platallax."

It is evident thate if the twormindors if sind I. ate not deactly Index errors. parathel whete thie pointer of the index arra is at zerotiof the graduated arc, the direct tard refledied images of the object \bar{I} will not coincide. The two imgers thay therr appen as ith' fig.
 to the wight of the real inules

The berizan- glatss is provided with two aidgistiments for cortecting this ertor, and in soime pattertes of intstriurient a specibll wey is supplied for turning the adjensting sorews. By turing one screw the images will be lotought to the same zevel in the homizom-glase, and by'the other sere'w the horizon-glass is slighitly turned] so. that the inages ooincide. If the sextant strows an index error of this kind when directed on a well-defiled object more than hall-a-wite distaint, it is well to correct the error at anee, or to get is domie tyy an instrument-maker.

If this cannot bo done, the error mast be reverded by metring the index aran intil the imeges evterlap (for the uphatdadioion error cannot be cotrected wfir this anelasis), anid roading' off the ertor on the graduated arc. It will tse observied that the latter is graduated on both sides of the zero ipoints The mall portion of the arc so grartuitod is called the "\% erre of estebses, land if the zero of the vernier is on this arc whou the direot and reflected images of the object are brought intar coiscidence, the reaching on this arc will have to be added to all subsequent angles taken, and if the index error is in the other direation, ing amount will have to be subtractad from other angles It is evident that it saves trouble and chance of mistales to have no index error.

The niked eje cannot read divisions smaller then $\frac{4}{80}$ th of an The venier. inch with accuracy, so that where smaller divisions than this have to be read it is necessary to use a "vernier" ind a magnify'ing lens.
The index arm of all sextaints 'is' provided "with these adjuncte, which énable the observer to redar with accuracty very swatl angular divisions. Thüt, if the firidex arn of a box sextath- were three fuckies long, the lengtith to a degreo on the scttle would be:

or tha wor th of an ineb. Thed dapger marine nextants resd to 10 seconds oflayc.
The Yeinuier is a subsidiary scalepl anch divistion of which differ* by a xery: 日math mhount from the length of a unit division of the primary scale on the graduated akc. This "repy small 'amount'" of differenoe is the limit, of apcutacy of reading possible. The pribuiple is follows in If any mumber af divisions of the primary scales say thnee, be take日 fort the lemgth of thelvernier, and this lengith, is divided inta frute equal parto (one part mare that the primary asaled each of there vernier divisions will be smolley that sach of the primaty pivisions by fth, (see IPlate XXXI, figh 4.) In figw 2, the zero, orid taf the rernier is eocn to be betwaen the fifth and sixth division of the primaty scele, and the second division of the vernier correpponds with une of the divis sione of the primary goale, se that the reading is $5 \frac{8}{2}$ thal or $5 \frac{1}{2}$.

Now, the primary saales or graduated ares of smals sexsants and of atation pointers are divided, inio amit divisions of. $\frac{1}{2}$ degnewk, so that if there wafe no veruier it would be necassary to gueshos the odd minutes if the if of, that inder arm were anywhere between two of these divisions. It is required to read to singlie, minateg, oft thoth of the unit divisions on the primary seale. Whis will be done if a length equal to 29 of these units is taken for then vernien, and thia length is divided up into 30 partss, each division of the vernier then differs from a unit di vision by sto of its leng th on 1 minute. Sych a scale and vernier are strown in! figh 3, Plate XXXI, The reading on the seale ie done as follows niser, plate). 'The \dagger of the vernier lies betweea $\mathrm{f}^{\circ} * 30$ ', and 2° i, passinigit the eye and, magnifying lems along the vermier scale, it, ic qeen that the fifteenth division of, the varaier corresponde with a divistan mark in the primary scalo; it ia, of equrse, the only one that does so correspond; the reading is, therefore, $1^{\circ} 30^{\prime}+15^{\prime}=1^{\circ} 45^{\prime}$. Fig. 4 is an illustration of the pcale and vernier of, a large sexistanit, readingite to seconds; The unit division of the primary scale is ${ }_{2}{ }^{2}$ th iff a degrten or 10 minutes. In this case the vernion has to reaid tand thiof hide puimary division, so 59 divisions of the primgry scale, are rakem and divided into 60 divisique fur the vernier. The reading of the latter in the figare is iqbvicualy yino

Vernters are sometimes constructed in which its divisions are slightly larger than the primary divisions, and in these cases the verniers read in the opposite direction to the scale. Such verpiers are not of ten, met with.

Use of tho Sextant in Submarine Miuning;
Before the sextant is uped aflapt, the phasrver should become tharonghly conyersant with its , use, pit shourai Angles subtended b_{y} different nojecta at different, ahtituphes slumpld first he read and then the obsarver should set that index to some pren determined reading, and pructipe moving alang au adigumaph ont

VERNIERS.

Fig. 3. Varvier of Bax Sextant, neading to 1 min:

Fig. 4. Vernier of Narive Sexciant, nanding to to sec:

Reading $20^{\circ} .32^{\circ}: 30^{\circ}$.
a walk until he brings another dbjeot in vaincidence with the alignment marks. This should be prectised with the converging mark to the right and then to the left of the alignment, and also with markes at slightly different ahtitades. The operator ehould then belpractised in a row-boat in spaooth water, and lastly in a stermer, with some motion on. In submarine mining, the sextant is nearly always used to find a pre-determined position on a given aligoment. It is of some imparfance to know which alignment post to bring inte coincidence whth the converging mark in the event of the steamer being a fittle off the true line.

It will be safest, in euch a calse, to bring the alignment mark which is mogt nearly the same distance ayay as the converging mark into concidence with the lutter.

It is a goged phan to warm the sextant in the engine-room before work, ae thijs peevents, to a great extent, a cendensation of vapour in the nikrors, which would other wise greatl) increase the difficulty of obserrations This condensation can glso be mitigetted 0 y polishing the surf ofes of the mirrors well with a piece of ghamois leathen
When taking a marinc sextant out of its box, it should be grispeat by the central frame, land taken up aquare. It should not be held by the mirrors of gfaduated arc. If the telescope is upt, ased, the plain eye-piece shquid be inserted in its place.

The Double Sextant arad Station Pointer

The donble sextant consists of two sextants fitted one immedipatply above the other, and cqubined together in a portable

Double sextant. forg. There is only one ayentole; but-in all other respecta, easoh sextant is complete in itself, and canybe nsed as, an ordinpry single saxtant. The two horizon-glasses revolve concentrically one immediately above the other; a small space on the lower pust of the upper minror and a siduilar space on the upper matt of that lower mirror beiag lent for direct vision, and the remainder silvered over. The upper mirror works in comjurction with an index arm and cradated atc on the atpper side of the instrument, and the fower mirron with a similat ang and arc on the lower sturface. The upper mirror reffects objects to the rightt of the obseiver, the lower one those to the left, while throught the unsil pered portion the central object is seen direct.

The atation pointer is a circulat protractor provided with three radial arms, two movalule and one fixed, the bevelled ediges of which radiate from the centre of the jnstrumento. The movaple arms are fitted with clamping screws, slow motion screws, and verniers reading to one minute of arc. The radial arms are provided with lengithening pieces which can be screwed on when required. It is better not to use these whan the iusirument is merely used as a protractor, but they. are aften neqquired when it is used as a "station pointer."

The instrument is liable to two sources of error.
(1.) Imperfeot vesitreing of the arms or graduation of the

Statiou pointer.

Eirrors of inetruments. scale. The errors from this cause will pary for different angles, and should rarely exist.
(2a) Dreon in the zerv of the werniars on ditex error. This in error willibenconetant for all baghesin

LAll instonmenten shoukd bort tersted to find theilvalanesk of these

\qquad
Thdraiangle ABO constructed in the semf-circle $4 B O$, whose raditu is about 15 inches, containh angles apiforimately, of 9°, 60°, and 90° at A. C , and F .
 one lage of the station painter, The encossa Dr defoct, of the sum

 the case may bea, Thive samae course in followed with the other. legiraf the instrumpent, and the corgectad angles are compated

 from each limb, will agreaxery closelyn t. If there is a disomepathyy, the fWaik must be ghecked again, to find, whether the error ascurzad, in measurementx

mean error $\frac{47}{8}=15^{\prime} \frac{8}{3}$.

Lebt Lege.

Observed Anglen Mean Correction. Corrected Angle.

mean error $\frac{\mathrm{A}_{2}}{3}=10^{\prime} \frac{1}{8}$.
The angles of the triangle $\bar{A} \overline{B C}$ should be correct within two or three intottoes, if ithls danefuht coristructed and of larige size. If the discrepancies in the measured angles are uniform, the error will be merely an index DIE, involving the addition or subtraction of a fixed number of minutes in all cases. Should the discrepancy vary considerably for each angle. measyred, e. g_{n}
 an error in centreing or giahtation 's apparett, and and ther

In handling a station pointer it shoula netver be lifted by ethe legs, bưthy the body or checle. "If the antle observed on the right is too small to be set off by the'猚ght leg, set the left leg to this sman dHyle, sad, tícating the left leg ds the central ofe, bring the right leg round the circle until the index standis at the sum of the two atighestosserved.

APPENDIX III.

GLOSSARY OF CERTAIN NAUTIOAL TERMS.

aly man

\square
htura

A.

Ytaff $\frac{A}{1}$ relative term used to denote the situation of an object qr point that is astern of another.
Abegnm. -At pight angles ta a vesgel's, broadside or keel.

Ahgard. - lingide a ship, or on the deck, of a ship.
Abreast.-Syuonympus with "Aheam." Side by side. To Breast.- To come abreast.
Agcommodarion Zagder + - A Bide, isadfor with plat.form for boarding vespels.
A^{\prime} Cock Bill.-The position of an muchor hanging by its ring to. the cat-head.
Adriyt.-Floating with the tide. Generally, driving ahout without control. Also a veesel is said to be adrift when shebreaks away from her moorings, warps, \&c. The term is: also applied to loose spars rolling about the deck, sheets or ropes which are not belayed, \&c.
Afloat.-The state of being water-borne after being aground. To be on board ship.
Aft.-An abbreviation of abaft, generally applied to the stern; to launch aft is to move a spar or anything else towards the stern. To haul aft the sheets is to bring the clew of the sail more aboard by hauling on the sheets.
After End. - The stern end of a vessel or anything else, or the end of anything neareat the stern of a vessel.
Ahead.-Forward; in advance of.
Aloft.- Up the mast; overhead. "Aloft there!" is a manner of bailing seamen who may he aloft on the mast, tops, yarde, \&c.
Alongside. - By the side of the ship.
Amidships.- The middle part of a sbip. The middle part of anything. To put the helm amidships is to bring it in a line with tbe keel. Gemerally, the word has refereuce to the middle fore-and-aft line of the slip, and to the middle athwartship part of a ship.
Anchor.-Anchors are made of all sizes and shapes, but those used in the Scrvice are of the old familiar pattern.

An unchor consists of the "flukes " (or flues), which catch and hold in the ground; the "crown," where the shank
joins on to the flutae arms; the "ring'," a fixturg in the enct
 the shank, and is kept in position by means of the "forelock," or key.

The anchor is "stocked"" whem the stock is keyed, up in position at right anglea tya the plane of the firkes

For small haots, anchops should weight il lha per fopt of length of hoath

The anchor in geretal ure in a messal is collto the "bower "anchar., An "Kedge" anchQr is sanaller and lighter than the "hopwer" anchor, and is used for light wowly it is nats as a rule , hesivy enqugh for a pessel to ride to, exacept temporarily and in fine weather.
Ancher Ruog.-A buay made fastiby a buay line \$o the orown of the anchor. It serves to jshow the position of the phehor, and, by means of the bipoy line, the fukes fan be tupped out of the ground in the eyent of their hrvigge caught in , rocks, old moorings, cables, de, It is always well to have a buoy and buoy line if, the ground is foul, or there is any chance of catching a telegraph or ${ }^{2}$ c, M, cable. Sompetimes the buoy is dispensed with, and the buoy line is stopped lighbity ,back along the anchor cable; this is called "scowing" the anchor.
Anchor Cable. -The chain or warp made fast or "beat on" to the zing of the suchor. A chain cable is generally dividead into leng the of 12 童 fathoms counected by shackleas, sp that the amouut of cable out can always be seem at ay glance, and the cable can be quickly disconnected at several points. This is done when a vessel is moored by two anchars and cables; the latter are connected together by meuns of a "mooring swivel" outside the vessel, and ane part of pable is led inboard. If this is not done when a vessel is moored for any time, the cables get twisted up into the condition known as "fopl hawse." The cables far kedge anchore and for small buats anchors are generally of rope, but wheu anchoring on rocky ground, 3.0 . 4 fathoms of ulajn should be inserted between the apchar and watp to saye the latter from being cut by the rocks. "Coir" is the best for, small boats. It is sometimes necessary to "sslip the cable," in which carse it should invariably be buayed. Care muat he taken to beud on the buoy line outside the haysi, piper The "bitter end" of the cable is generally made fast to the keelsou by means of a slip link. The cable should, when worn, be turned end for end.
Anchar Trith ht Or "riding light" The white light suspended in the bow of a vessel "riding" at anchor.
Anelupry to.-When about to anchor everything should be ready, cable "bent on," aleart the bonoy lime and buoys if, used, the archor either on the rail or hanging by a slip line Gaalled the "catrfall") at the cattheed, The anchor should not, as a rule, be "let gg". vutil the yessel has sterrnway in the direction ghe will.ride; this.ensures the flyke being dragged into the bottom and preventiq its heing "tripped", by the

Inubight of cable; onidutith cable showld he rangell on deck to dithow the anchdr 'fust to teach the bbttom wher' let' go ; after this is trathe aitd "the "VBsstill hass' way iu the required direction, the cable is "veered" or "paid" out as mquired, tundebeing taked rehn'd'a Boilard", the ofttos, or wihulass. In
 is surficient * steppen to pty out. In stridhly firide or sea, yery much more is necessary. Sometifrees it haty be
 Is dothe from a boat in which "g sufficent lenjth of warp is colled to allow her 'to reach the "propier posittbin for the
 down two anchors. These are, gelefay pliticed up atit down

- atid to the dithet bu the ebls thde.

Ahekiath vo "e brthit fiotre" whe-Td trag it along the botom; \therefore "genlerally catued by hating tod"ilitle cbain oitt, or " spope."

 proper hôding position. It hay te done by a Wessel swinging to tide or wind"therriciditg to a single anthor.
Archor, to weigh, -Ity raite the anchor off the grouitid: The anchor is said to be "hove short" when the chain is ap and duww', jusit before it is "uttrippéd."
 has been" bo ifuch hovt in at to form a line with the fore-

- "stay; " hote short" so that the vestel is over ther ancifor.

Apithll A piece 'of timber fitted at the fore end of the keel at its intersection with the stem "ind up' the stem.
Astern, - Towards the stern. To move astenth; to launch aetern; to drop astern! An objecte or vessel that is behind another
Vessel or object.

(1) The Reel. Athwat Niffy is thus actoss the sptip from one side to the other. "Atliwart ha whte is when one t'essell gets across the stem 'bl anbther.
Avast.-Stop, cerse, hold, discotikitue! Ass, avast heavitig (stop
"hoatingy, avast hauling (stop lisititt); \&c.
Iwaill le Level with the sutfiee of the water:

 lisw ${ }^{\circ} \mathrm{P}$ phe.

B.

Pule.-To thtion watier out of \& vessel or boat by buckets or balers,
 the calle or rope is worthd whfles heavintrg. Squetimes tertide the druin?

Beanl. - A timber that ctosses a veisel trinneverdely to support thie deck. The breadtti' of a tesselt "Before the beam" is

 with the wind , IA heam, wind is a mind that, blows ataright
 the steru.
Rear. to.-Tho directign an phaject, atakeps from ship expressed in companeanginits, or by, points, in, the reseg iz as in refer-
 the port bow or weather bow, port beam or weather heam,
 whath

Belay, To.-To make fast anfqipes or fall jaf a taoklew, In haul-
 lay " "or "Belay there!" "Belay that!" onj"ANMeat haviling! Belay!"

1. $)^{3}$.....

Below. - A general term for the uipder-degk space. To gawbelow

Bend.-To fasten a rope to another; to finatem a paplito a

Ri/gw- Thie, round in atiresselis, timbers where theynbegin to apploqch a yerticaldinection.
Bill Boards.-Pieces of wood fitted to the haw, of a yersel to

Bimpracle yTA case wherein, the conpass is pantainal.
Bitts.-Stout piecer of finplperafitted in the dackrla neagiva the bowsprit; also stout pieces of timber fitted in the deck by the side of the mast to which the halyards are usually belayed.
Blath

Boat Chaclis or Skids.-Pieces of wood with a score in them to
 \&c.
Boat Keeper. -The man left in chargie pf al baat wher the other

 as the gig, cutfer, or dinghy. Lu,
 after-body: A vessel is baid sto be wongrhodied, whiten the
 bodied when the feverand oftralines tapor very suddehly; a long body thus means a great parallal langth afinmiddebody.

Bottom.-Usually muderstood as the juax of a vassel boinne the bilge.

Bow. The forepart of a vessel; forward of the grestest tuansverse section. In taking bearfugt an object is axil to be on the bow ip its direction does not make more than an angle of 45° with the line of the keel
Bowser Anchbr. - The ancher in coustant use.
How Foll. -A warp for holdiag the vessel by the bow.
Bredoct Fasi.-A warp fastened to a wessel ainidshitp to hold her.
Breasthoek. + A strong $=$ shapeed wood knee used forwayd to bind the stem, shelf, and frame of a vessel together. Breasthooks are also used in uther pette of a vessel. They site now frequently made of wroitght iriori.
Aridlesu-The patts of modringe to hold on liy; theny ropes ryathered into one.
Bring Up.-To come to anchor.
3rodulide Oh. When a resoef mores sideways, or when she it approacked by ariobject at right'angles to her Broddside.
Budhedis...The athwirtship parkitions which soparate a vessel in compartments, cabins, \&c. Fore-and-aft partitionsis are Tiahao thermed bulkheade.
Bullig nisera A block without a pheeive; and with one hoile in it. They are usually iron bouide.
Burnowrid. - The side of a vessel above the deck.
Bunk.-A bed or place to sleep in in weabiu.
 Spanish burton consists of 'two single and orle double block-
Buttl-Whar foining or meeting of two pieces of wood end-ways. Butt and butt means that two planks meet end to end, hut do note oterisp.
By the Head.-Whert the 'vedset is'' trimimed or 'depressed by the head, so that her proper liny of flotation fo departed from.
By the Stern. The contrapy to being by the head.

c.

Cable.-A rope or chain by which a versel is held at anchor. The length for a cable wecording to the Admivalty is 140 fathomis.
Oable's Lengtha- A measire of one-tenth of a sea mile; 608 feet, or 101 fathoms, or 203 yards.
Carken-i-To heel, to list to dean over.
Cairy A way. -The breakage of -a/spur, rope, \&c.
Carvel Brairs-Bulik with the plairk flush edge to edges, and the seams caulked and payed.
Catoch a turn, -To take turn qulekly with a rope round a helaying pin, or bitt, or cavtl.
Gandead-Timiber or iron projection from the bow of a veasel by which the anchor ins hoistet zqp to the rail, after in has been weighed to the hawne pipe.
Caulling.-Driving oakum into the seams of a vessel.
Cavel. -(Sometinnes speit "(Kavel)," or "Kevel").-Stout piecess of tianber fixed horizontally to the staneltichis of bitts fors belaying ropes to.

Chain Locker.-The compartment in the hold of a vessel, wherein the mogring chain is stowed.
Ohain Pipe-Irun pipe on the deck thrdugh which the cables pass into the lockers.
Ohect-dabibck, -Sadd of two blocks wherr; in hoistinit, or hauling, the "wio blocks of a tackle are brought close tongether. Generally when two things are brought so close togethier that they catmot be got closer.
Cleats.-Pieces of wood or iron, with one or more arms fastened to spars, \&cc., for belaying to, or to prevent ropes slipping, \&c.
Clanch Worth-(Spelt aleo "Clgncker," "fllingaher," and sometimes "Olinker").-In boat building when the edges of the planke overlap, forming lands.
Coal, Stowage of:- It is usual to allow 40 pubia feat pem tan a ${ }^{\text {ar }}$ the stowage of ceal in bunkers.
Coamings.-A raised frame fitted to and , hanopt the, deek for the
 spelt "combings."
Come U_{p}. -Generally to slack up. Whils hanling on the fall of a tackle, and the order comes, "A, yast Hiauling there e" the havid that has to belay sings nuty, "Came up behind," all hands instantly release the fall, so that the qne who has to belay may fateh the tern round the helaying pin or caveql without "Josing any."
Comirg. \rightarrow Directing a steorgman in the use or maragement of the helm, Telling him how.to steer.
Copper Bottomed.-The bottom of a ship skeathed withrcopper.
Copper Fastened.-Fastened with copper bolts and nails
Connter. The projecting part of a vessel quaft the sternpast
Course.-Direction; the divection in which e.vessal moves; the direction from one point to aupther point whigh a vessel has to reach.
Covering Board-The outside deck plank fitted over the timber heads. Sea "Plank sheer."
COrafi--A weseel; also used in the piaral, thus a number of creff or a lot of crafl, means a number of vessells:
Crown of an andior: The part of an anchor where the arms are jomed to the shank:

D.

Davits.-Strong ivou armb used for hofisting bata, \&c.
Dead Wood. - The solid wood worked on top of the keel for ward and aft.
Derrict,--1h kind of crane.
Dipping Lug Sail.-A sail hoisted by a halyard und masi hoop travallet. The sail is set to leewara of the mast, than" the tack is usually fast to the stem or on the weather Bow. In tacking or gybing the sail bas to be lowered and the yard shifted to the other side of the mast.
Double-banked. - When men sit on the same thwart to pow oars from different sides of a bust.
Double Blook.-A block with two sheaves.

Douse pr Dorse -TTQ AgFer oway, suddenlx, to take in a sail suddenly.
 grapuels.
Drearght /af Wiatini-The depth of on Yasisel to the extreme unden-
side of he lisel, measyrec, from the lopd Mater line.
Dat it T Ta Haat, about with tha tide or, chrrent wh whe
Drift. -The distance between two , bleqks of a facklele, ow, the two Defty of anf thing.

 to slacken.

 dinetwitm tr the ends! !
End On.-28hatufla vetay whien she has an objebet bearing' in a line with the keel directly ahead of the hewl. On apptroaching

all of the vedsefly, the ibowsprit will ther potht to thet mojoct,
Whestee it is' sometimes stad tlitt ans ofjeet its riforhe on for
17. "the bowsprit'end ?

Ewtrante. - The fore part iff a wesel", whe bott. A" Agod dytrance into the water means a long well-fortheal botv:
 port or starboard, alded wheir her "treel is forizmtat, that is
 same (ax) (afe!

"if -pipes, twhethe are theis "yytes of her."

 obstruction flrom the sheprye hole Alsona " leed " made for

Fairway.- The ship's course in a channel. The ravigable oblennel of a harbour as distinet from an anchorage in a harbour. A harbour-master's duty is see that the fairway is kept clear, gud that po reqeals imppoppoty annhor in it. Ac fair-

Fake, A.-One of the rings formed in coiling a rope. The folds of a cable when ranged on deck ind long, qlose loaph To fake 䜌 to artange. in folde.
Foul wThe those, end of thewspe of a tackle, the hauling part of (1) \mathbf{y}_{7} tagckle

Falling Fidemme whbize tidem lis: vit wh
False Keel.-A piece of timaber fittad, under the main keel to

Fast.-Mado fast by belaying. Wrate "I Bresst Fapty" "Bow Fast," "Quarter Fast.")

Fuodoniags.--The bolts, naila, \&c., by which the framing and planking of a vesssel are hdild together.
 arrive at the bottom of it, to undenstand it.
Frathering.t Turning an par on itt blade as it comes out af the water,
Fender.- A sort of, buffer pade of rape, wond, matting gark, or other materigl, to hang over the side of a vessel when she is about to come into contact with another vessel orpbject
Fiend Off:Th ward off the effects of a collision by placing a fender between the vessel and the object which is, gaing to be strucic.
Flood Tide. The rising tide, contrary to ebb.
Floors,-The bottom timbers of R. vessel.
Flowing Tide -Tlbe fising tide, the flood tide.
Flukes.-(Pronounced "flues" by seamen). The barbthhaped extremities of the arms of, an anchor.
Flush Deck.- When the deck has no raised or siunkgn past to
Fly, The part of a flag which blows out ; the opposite side to the hoist; the halyards are bent to the hoist.
Fort.The tower edge of a sail.
Fore.-Front; contrary of aft ; the forward part.
Fore-ard-Aft,-Running from forwfer aft, in a line with thakeel.
Fore-body. - The fore part of a ship which is forward of the
i) greafest fransverse spction,

Forecastle. The space under deck hefore the mast, allotted to the seamen.
Fore Foot. -The foremost part of the keel at its'intersection with the stem under water
Foremast.-The mast which ofetupies the most forward position
If: in arvesed.
Fore Peak.-The forecastle, a space decked-over forwaid in a small boat to stotw geae in.
Foul Anohor:-Whori an shchor gets a turn of the cable round its arms or stock; whien embedded among rookd sis, so that it cunnot be readily recontuted. Also a pictonsel thehor with a cable round the shanle, ste.
Dout Bet the When two vebsele that are anchored or thared have not room to swing without fouling each other. If a - éssel is property moored,'mid another fouls her bectin, "bhe is held liable for aray damage which may onsue.
Foul Bottom.-A rocky bottom; also the bottom of a ship when it is covered with weddsy fer.
Foul Kawse. When mooned, if the cables get crossed byiche vessel swinging: with the tide.
Frames.-The timbers or ribs of a vessel.
Fandypisig--A rope put round the partis of a tackle ne odlier ropes which are some distance aport, to draw them'together and increase their temsiotio or prewent them overhaulisg.
Itrecboard-The side of a vessel which is above water.
Wiull Afl-When a versel is send not to tmper sufficiently aft.
Full and Change.-See "High Water."
Full Bowed.-(The same as " Bluff Bowed."

 it is rabeted and lobited.
 under the influence of the wind on her saile, or tindér the

 whid.

$\because-40$ poull
Gooseneck.-An iron jointed bolt used to fix the exdtury Bobtas to the mast, \&c.
Granny Krot-An insectare kndt which Mr seatmeth never ties, but which a landsristit if'somerine'es' seen to ad when trying hits
hrend at reef-knety: 1
Grapad.-A grapling inth with'four ofaw's, tsed to zrodr small batad by "er to drag the beat of the' set
 ways, \&cc. ${ }^{1 e}$
Grounding.-The act of gelting diffohnd or Haking the grotand as the tide falls.
 It seeurilig a vessel:
Gudgeoma.-Metal eye bolts fipted to the steft posty to treceipe I *he hinates "of "the rutider! PSee ${ }^{\text {a }}$ Braces. ${ }^{\text {" }}$)
Guy-A rope used to steady a support or spar,

Hin

Halyards, or Houlyards, or Halliards.-Ropes for houligg up sails,
 Hand aver Hand-Haxling on a ropentow ane dand at a time and If in pasaingone jhand rapishly yover the ether the haul. It wety
 1 Mbedeno "haratorec honda"
Handsomedy.-Steadily; withl, care Nat too fast nor fuot too
 "14 handgangely:"
 togethep, sons sarm is paated tor the rander bilde of te beani,
 Hatshes ar Hatchways. - Openingsin ble wiotks way
 which the hatches or hatalf comers betat.
Hasy-To pull on a ropdo

 Whadt in mputradiptincting tans"by the stemil. Tep heat is to pass ahead of antothar Noursild

 \&c. To throw, as "heave Ryeripard."
Heave Ahead.-To draw a vessel aheal by heaving on her cable, warp, \&c.
Henve Short.-To heave on the arble until the vessel is over the anchor, or the cable tant in a line with the fore stay, so that With anotilei heave or by the action of the sails, the anchor Will be broken out of the ground: w | J
 of the mast (the fore part of the lower, chud of a mast is dalled the toty; hetr of a yurd, hetel of the betwsent. The

 to the tiller.
 thertby br itig the vedselpe head rotind to stiarkoadd. If a wheel is used bestided an tiller, the dection ifliwnoung the wheel to piot luing ' the vegsel'siliead revid to polt, as the tiller is moved by the shains"the gbatbodrd: Phtur with a
 to Btaikioard?
Helm, to starbocird the. - pro patt the filkow the way opposite to port:

= "it'has been troyed to port or chardbavd, the the case may be.
 high water at the full moon and new moon is set down, the time of high water at the frll moon and new moou always occurring at the same hour throughout the year ; therefore, if the time of high water at fulb lamd chanigy (Beqw moon) is
 particular day cam be roughly mealablated, aboub 85 minutes being allowed for each tide.
Eikehavia thode of festonint a rbpe There ane mapy, kinds of
 hitch tollinge hitch, sice A hitoh is elso a shoit tadk or
board matle tha cotodorhauled sailing.

Hoist. - The length of the luff of a fore-andferib suity on the space it requaireanfor hoistindor The hroist bf a flag is the redge to which the roping is stitched.
Hold.-The interior of a ship; generally understood to mean the space in which cargo, \&c., i, stowed away.
Holding Water.-Resting with the blades of the oars in water to check a boati's may, or sfoplers
HulluniPthe dhips as distinlot from, hew masts and siggipg-

> J.

Junk.-O3d rope; also old salt lodef, as tough ane haild as otd tope or cok in clieo a Chineas ship.
Jury.-A makeshift.or temporary contrivance, as jury doasthj jury (4805)
radder, jury lrowsprit, fe.erwhich nay be fisted when either has been lost or carreled away.

Kedge.-The smallest anchor a wessel carries, used for anichpring temporarily by a hawsph ar warp. To kedge is to anchor by the kedige on to earry the kedge nachor out in a boat, and warp ahead hy it,
Kheo. - The fore-andouft timber in a vessel to which the frames and garboard strake are fastened.
Fielson or Kelsonn- An ingidg keel fitted over the throats of the floors.
Kevel or Cavel.--Large pieces, of timber used for helaying ropes to, such as the horizontan piace which is bolted to the stanchions aft to belay the rain sheet to.
Krees,- Pieces of timber or iron shaped thus L, used to streng then particular paxts of a ship. A hanging, kpee is the one fitted under the beams, a lodging knee is a knee fitted horizontally to the beams and shelf, or to the mast pariners, or deck beamн, Floor, knees are V -shaperd, like breast-hooks,
Knot.-A geographical mile, or sixtieth part of a degree, termed also a sea mile, or nautical mile The Admiralty knot or mile is $6,080 \mathrm{ft}$, /a statute mile is, $5,280 \mathrm{ft}$. A sea mile $=$ 1.1515 statute milfe ; a statute milo $=86842$ sea mile.

L.

Lay of a Rope- The wray the strande of a rope are laid up.
Lee.-The oppositerside to that from which the wind blows
Lend a hand here. 4 An order to a person to assist.
Lightz.-See "Side-lights."
Lineg.-A general term applied to the drawisg or design of a vessel as depictrd by fore-snd-afít lines. A vessel is said to have fine lines when she is very sbarp fore-and-aft.
List.-A vessel is said to bave a " list" when she leans over on one side owing to the way her cargo or ballast is disposed.
Load-uater-line:- The line of flotation when a vessel is proporly lader or ballasted.
Lose her Way, - Said of a vessel when she loses mation, or gradually comes to a stop.

M.

Make Fast.-To socurely belay a rope, or join two ropes.
Meet, to. - To meet a vessel with the helm, is after the helm has been put one way, to alter her course, to put it the other way to atop the course being altered any further. This is a lso called "checking the helm."
Moor.-To anchor by two cables.
Mousings. - Yarns wound round hooks to prevent them hecoming detached.

N.

Neap Tides.-The tides which occur between hew and full moon; spring tides being at or near the new and full moon.
Nip,-A short bight iu a rope, such as the part that goes round a sheave, \&c.

0.

Overhaul.-To overtake another vessel; to Loosen the parts of a tackle; to ease up; to slacken or free the fall of a tackle; to slacken or "lighten up" a rope.

P.

Painter-A ropa spliced to a ripg-bolt in the bow of a boat to make fast by.
Pdrcal.-To cover a mpe with strips of canvas, painted or otherwise. The canvas is wound raund the rope and stitched, or "aewed" with spun yarm.
Pay,-To ruu hot pitch and tar, or marine glue, \&om, into searns after they are caulked.
Pay Out.--To veer or slack out chain or rope.
Pendant.-A stont rope to which tackles are attached.
Pintles,--The metal hooks by which rudders aro attached to the gudgeors.
Plazking.-The outside akin of a vessel; piank laid on the frames or beams of a vessel, whether inside ot outside.
Plank Sheer.-The outeide plank at the deck edge which covers in the timber heads, and shows the sheer of the vessel: The same as covering board.
Pork-Ther left-hand side; the opposite to atarboard. Formerly alaa termod larboasd.
Preserving a Boat:-All small boats, if possible, shoukt be hauled out of water or beached when not in use. Varadsh preserves the wood from water absorption better thian paint. Whenever the varnish becomes worn, the boat should be recosted.
Preventers.-Additional ropes, stays, tackles, \&cc, usedi to prevent spars being carried away if their praper stays give out. A prosenter is also any rope or lasking used to prevent something giving way.
Punt find small boat or dinglay.
Purchase.-A tackle; any contrivance for increasing mechanical power.

Q.

Quarters.-That part of a yacht or ship nearest the stern.

R.

Rabbet or Revate.-An angular channel or groove cut in the keel, stem, or sternpost, de. to receive the edges or ends of the plank.
Taskanden rope or neizing used to lash the parts of a tackle wogerher by taking several turne, so as to keep them from
running through the block whilst the fail is cast off for some purpose, or whilst one hand belays the 'fall.
Tcail. Whe timber fitted on to the headis of the bulwark stanchions. Called also "top rail."
Paditi-To lean forward or aft frona the verticalls as taking finaste, raking stermposts, raking stem, \&cc.
Range.-Scope. To rauge is to arrange ; to range the cable, to place a lot on deck in fakes ready for veering out. To give a range of cable is to veer out enought in letiing go the anclior to bring the vessel wip without causing inuch atrain to come on the bitts. To sail near to, as to range up to windward, to range up alongside, to range along the coast, \&c.
 take a reef in the bowsprit.
Reenf Bund!-A strip of canras sewn across the sail in which the cyeled holes ate worked to receive the reef points.
Reef Cringles.-The large cringles in the deeches of sails through whichin thes reeff pendmants are rbues, and taveks or sheefts hooked.
Reef Points.-Short. pieae ofil sope attaclied to saile to secure the folds rolled up when rédfingt
Renden-fIb slacken or edsee upi A 1opor is said to render when it slackens without warning.
Heeve. - Tb put à rope throtugh a hole of aryi kind.
Ribs.-The frames or timbers of as ship or wowat.
Pide.-To rest at anchor, or: to be iheld byiaty anofibs.
 of vessels when riding at anchom
 schooner rig, cutter rig, lugger rig, siou IThigy ins to tht the

Rightevinuth Mepra, -Rope laid up of twistedi withy the swn.
Rising $P^{2 l l o a r v i t-D i s t i n c t u f t o m ~ f l a t-A m e r e d, ~ o r ~ f l a t-b e t t o m e d ' ; ~ w h a r p-~}$ bbttomed.
Risings,- Stringers fitted inside small boats to strenguhtres them asyd suyponat the thwards.
Roundi draw T To hasl in \& rope.
Round Thurraw-To pass a rope twioe round a pibi or clent se as to make a complete circle.
Rowlockis. - The fittings on the gunudid to receive the theles or crutches for the oarss.
Ruff or Roove-A small ring or square plate placed over copper nails before clinching in boatobulding.
Running Rigging. -The parts of thie rigging made ta overhaul oi run through blocte, as distituet frope thet set up by lanyards, shackles, \&c.

S.

Soopen-LLength or drift of rope or cahle.
Screens.-The wood shelves and screens, painted red for port side and green for starboard, it whicel a Fessel's sidd-lightas are carried. (Stes "SidreGightrs")

Savilt-A short, oar used with ome hand. To sealluis ta propel a boat by morking an var over the centre of the trausom on the prixeiple of the scheiw.
 frift the deols of mather.

is said that "she shipped a sem."

Sourting. tha way ef sepuning a thighte of rope by a lashing so
 thagetheriss
 tinarled.
Sempid-To coven a rope widh wpor yetn culled "sievvicas"
 Perly confusent withuthrait" in reference to the wayr:s sail standso 1

Sheakior The forle-mindaft wutnes of a wemsta's deek or donlwarks.
 nemselvintiate dhe timber headel, biadivg the timurns together;
Will the deck hegnume rest qna andiune fasteried toithe shelf.

tolurendecured.

 it tautarkiosnis.
Shift of Wind.-A change of wind.

- - hip meanent isa

Ship Shape.- Done in a proper and unimpeacliable masales.
 bide of thtr heedi
Side-Eights.-Thered (port) and green (starboard) hights iearried

iv weather are not requined to have theinwide-lights ated; bat
 neade to sitow, Opte boats must-casry light, wind-if the neasi side-lights arr not ubed they/must have lanterns fitted with guecas and wed slidedsytor shiow wher required. 8 team vessels and steam launcheres, in additiont to. theo unazel sidelights $;$ must carry w whitel light at whe niaithedit, or on the fumelt
 (Fartiodlly) rabethe mactherd. Adl tressela, when at swathor, arre requinde to exhibith afteo sumdewre a white light' at a heighte riot exieperioing 20 ftu above the krelk This light must Le tisible 10 mise mand show all rowted the harizom. It is
 a white masthead light, and exhibit of "hase tipl" avery
fifteen minutes. IFrishing veasela and opan boats, when riding ito neta, carry a white light and show al fiave up occasionally. If drift natting, afishing boat must carry two
in red lights verticallys a whip which is łewing overtaken by' another ship must show a white lightiot fiante up over her
Thi:stern. Previous to 1847 there had been/no regrriation as to
it ithiocearrying of lights ; the chstom being for sbips to exhibit a light over their sides when appropiching each other at night; but, in 1A\&7, the Admiralty were empoweted to
maiken regulations respocting lights, and ateamers were ordered to exhibit a white light at the masthend, a green light to starboard, and a red light to port, and vessels at
A. anckizor a dpright light. And sailing ships were ordered to show, when required, a green light on the starboard side, and a red to pott: As between steamehips and sailing -ressels, the latter were required to pressnt a light to the
iof former where there wrasi any danger afs aollisiom The Admiralty Court acted upon the Admirally Rules. The Order in Council issued imi purauance of the Act, and dated Jhane :29, 11848, and the Act 1852, re-affirmed the former reguldtions as to steameres, and recommended all sailing
uif ressels to be provided with red and green shaded lanterns, had lights to be shawis on the port or starboard bow, according to the side a wessel might be approachingu Section 295 of the Merchant Shipping Aat, $18{ }^{\circ} 4$, confirmed the powers of the Admiralty to the same extent as before. The Merchant Shipping Aot, 4862 ; did not alter the law with respect
(ti) to atyeamodns, but made it compulsoty op stiling ships to keep their side-lights fixed instead of displaying red or green lights by hand lamps.
Signal of Dtistress: - An'ensigu hejisted jack downwarde.
Shan - Che outside or inside planking of a vesselt
Slack.-Not tant. To slack up a rope or fall of a tackle is to ease it.
Skack Tiden The tide between the two stueame when it runs neither one way nor the other. There is high water slack
bund low water slack.
Sliph- Tiolat go, as to slip the cable
Snatch Blheck:-A block with an opening in the shell so that a rope can be put over the sheave without reeving it.
Splice - TTo join the ends af rope togethat by interweaving the untwisted strauds. An eypersplice is farmed by interweaving the untwisted end of a rope in the lay of the atrands.
Sgring, 4 A watp, or hawiser; or repe;:
Sidrboard.-The riglat-hand side. Thie opposite to port.
Steerage Way.-When a vessel moves through the water so that Ishe, can be steered. In simpily drifting or moving with the tide a versal has no stebrage wayion, and cannot be steered; therefore ateerage way neans. that a vessel, relatively to . the watei, moves ahend and passes througle the water.
Sters.-Thetimber at the fore eud of a vessel into which the ends of the plank are butted. To stem is to make heaiway, as agalupt a culurent.

Step, \rightarrow it piece of timber or metal to neceive a viesel's mast, \&c. To step is to put a thiug into its istepl - +il '...
Stern Board.-A movement of a vessel stemmwards
Steriz Wig:-Moving astern ; to mhake a stern! 'boswd:
Stern Post.-The strong timber to which the rudder is hwiyg.
Stome Sheots. - Thel seat in the aft end of a baat. Sometimes the thres-cornened bottom boatd is termed the attern sheet.
This board in a gig is usually a woad grating. In small
fishing boats the stern sheet is the platfond on- which the fisherman coils away his nets, lines, dec.
Stifif.-Not easily heoled; having great sta hility.
Stock of and Anchor. The croes bar near the shackle.
Stopper:- A rope or lashing used to prement a rope or chain surgiag or slípping, as cable stopper, rigging stoppers, \&ci.
The latter is usually a short piece or rope prat on as, a kind of ranking to preveut the rigging or itsitackles rendering. A stapner is sometimes put on with a bitch (Gee " Racking.)
Strake or Strealn-A: breadth of plank,
Strandech-Said of a rope when one or more of its stpands have burst. Gast ashore.
Stringers.- Strengthening strakes of plank or iron inside a vessel's frame.
Sweeps.-Large oars.
Suivel Hoak.- A hook that revolves by a pivot insétedin a socket and elinithed.

T.

Tackle.-An arrangement of ropes and pulleys for increasing popwer; a purchase (Pronowned "tajlikel" by sajlors.).
Taffrail.-The continuation of the top rail round the after end of the counter.
Tail block.-A block with a tail or; piece of rope stoppened to it, for Making fast the block instead of, a honk.
Tail on.--Au order to take kold of a rope and help haul.
Taunt, -Tall, high, towering.
Taut.-Tight; stretched as tightly as possible.
Thimble.-A ring, pear-shaped or circular, with a groove outside for ropes to fit in. When the thimble is peat-shaped it is usually termed a "heart thimble".or "thimble hearts" These thimbles are used for the eye splices in repes, whilst circular thimbles are mostly used for the cuingles of sails, \&c.
Tholes.er Pins fitted into the holes in rowlochs 'for oars to work in,
Thumb Cleat.-Pieces of wood pitt on spars, 'cre.; to prevent ropes or atrope from slipping:
Thewrerse. - The transverse seats in a boat.
Tidal Harbour. - A harbour that can only be evtered on cettain stages of the tido.
Tilla:- The piece of timber inserted in the rudder head for steering, usually termed the helm.
Tiller Lines.-The lines attached to the tiller to move it by

Tiller' Rapat.minhe ropes nittached to the Hisart tilleir when a wheel is used for stceotuing
Timbers,-The frames or ribs of a velsell:
Top Rail.-The rall fixted avi the stanehlons as a finish to tipe hydwerisis:
Mopsindur hhat part of veatol above the walos mow sometimes anderstuod as the part betweem the weted line and decte, or the freeboard
To. Whipow-llo bind the ends of rope with twíne to prevent their fraying.
Transom,-The frawial the sterngeot of a vessel. Ir boats, the transwerse board at the 'sterns, which gives shape to the

1. 'quasters,'and formes the eterm endiof the boaty

Travelder - An iron ring, thintle, or strop, which trawels on a spar, bar, or rape.
Trimat The pbsition of a ship in the water in an fengeand-aft directionit To trima a wessel is to set ther in a intettifular position by the head or stern. The term is sometimes erroneously used to represent the shiftirg of ballast trans-
tersely." The trim the saids is to shieets and tack them so that they are diaposed in the best manner poserible in relation to the direction of dhe wind.
Trucks.-The wooden caps fitted on the upper mastheade to reeve the signal halyarde through.

Turn.-A circle made by a rope round a pin, \&c. "t Thiri 0 ?" is an order to belay. To catch ${ }^{2}$ s turn is to put the fall of a tackle or part of any rope round a belaying pin, stanchion, soc.
Turh of the Title, - Wher the tide charges from flood to bbb , or the ebinet warly !
Twice-laid Rope--Rope re-made from old rope, A term of reproack foulanvisles of imferior queblity!
Twa-blocks.-Said hambers tackle Haid beett used so that ite two

ษ!

Uribend.-Tio cast loose a sail liform its graff; yiandy The mpasite of bend.
Undenrumentol follotw up a sope] chain hawhdry of nubles, by haurlinglit in from a boho which moves in the dinetrion that the cable, sec., is laid out.
 vessel. Under the lee of the land, sheltered from the full fonce of the wiod by therland.
Under Way.-Moving through the water under the inftrence of the wind, stesm, ar diarss Sometimes wrongly written "rander weeigho"
Uumoored-With anchors a-weigh. A vessol is also said to be
 be moored, two auchoramiant le dorwn.
Unreeven- To haul out e rope froma a boles dec.

Emaluip,uwho remove a thing from its ledgment. The opposite ${ }^{15} 5$ of " 4 te ship."
Upper Strake.-The top strake sumbing round a vestel at the deck edge unden intile covering board, ustiahy stouter thraic the general planking, and alniost always of hand wood to better hold fastenings.

$$
\mathbf{V}
$$

Farmish.--Black Jappunty lamay blawki, 11 oz ; bitummen; 2 ozs. ; acetathy, $\frac{1}{3} \mathrm{az}$; lead, $\frac{1}{8}$, Turkey uniber, $\frac{7}{8}$ oz; Venice turpentine, 12 ozs.; boiled oil. Dissolve the ofl in turpontine, powdes the other ingredienta, and stiry in graduafly. Simmer on slow fire ten minutes.
Copal varnish: copal, 30 ozed in drying linseed oilt, 18 ozs.; spirits of turpentine, 50 ozs. Briskly fuse the copal; heat the oil to clage on boiling point, and pour it hot on the copal ; mix thoremghty ; allow the mixture to cool a hittle, and add the turpentine; mix thoroughly. When cool, strait for use.

A quick-drying varnish : copal (fused), 7 lbs. $;$ hot linneed, $\frac{1}{3}$ gall. $\frac{f}{\text { hoot turpentines, }} 1 \frac{1}{2}$ gills Carefully atir and boil togother.
 of turpentinie.

Varnish for metalf: pomider 1 lb . of copyal, adel dissolve in 2 1bs. of strongest alcoliol: A very quitul-drying vamish.

Wamish for irom: mastic (aleaf grainer, 10.lbs, ; ceamphor, 51 hes; samyazach, 16 lben; clemi; 5 libs. Thigsolve in sufficient aboohol:

Black varnish or quelishi fow incon: wesin, 4 ozs.; lamp black, 2 ozs.; beeswax, 3 ozsi; shelliad 2 ous. ; imiseed oid, 1 gt . Boil together one hour and then stir itit $\frac{1}{2}$ pint turpentine.

 Dissolve the heet boll and beeswtex in the tuppontime 'add the lampe black and tax, warm: and mix it tisbroughly. This misture should be applied Hot.
Tar varmish for wood or iron: cosk tar, 1 gall.; dil of viturioh, 2 oz ; mix: therouyhly, and add $\frac{2}{2}$ pt. of tarpentine, mix and apply immediately. Thie dries quickly, and only quantitites sufficient for use should be made.
Tarnishing a bright Boat. What the planks, isic., sind when the oil
1 is dried in put on two coats of copal mairnish. If sive is used instead of oil, the varvish will peel off: To clean off ravnish take a mixture of sodis (2 lbs) s soap (1 Wb), boiled together ; it will remove warnish from eprorth sec. 'tt should be used hot.
hieer. -ilo pay out chain, Veer is alao used in the sense of wearing or gybing. The wind is saik to veer wher it chitnges indirection with thae sums. To back when it chayges apailest the sun. The wind is saidid to veer when it draws more aft. To heul when it comes more ahead.

Veer and Huul, T-To slacken up a rope, and then haul on it suddenly, in order that those who are hatling on it may aequire a momentum. Pulling by jerks.
Veasel, -A name for all kinds of craft, from a canoe to a threedeckels

W.

Waist.-The middle part of a vestel's decks.
Wakc.-The peoiliar eddying water that appears after a ship has passed. Vessele are said to leave a olean waks that do not cause waves to form asterch.
Wall Krot-A knot formed at the lend of a rope by unlaying and interweaving the strands.
Wall Sided-50p and down sides of a teasel, that neither tumble home nor flare out.
Wash Struke. $\rightarrow \mathrm{A}$ sirake, fixed or movable, of plank fitted to the gunwale of un open boat to fucrease her height out of the water.
Watch.-An anchor buoy or mooring buoy is said to watch when itw hropps above whiter.
Watches.-The divisions of time for work on board a vemeel. The crew of a ship is divided for this work into two watches, port and starboard, sach watch being alboreately on deck, excepting in emergencies, when both watches may be called, on deck Watcher are thus divided : from $8 \mathrm{p} . \mathrm{mo}$. to midnight is the "First Watch"; from 4 amon , to 8 arm . is the "Morning Watch"; from $8 \mathrm{a}, \mathrm{m}$. to noon is the "Forenooil Watch"; from noon to 4 p.m. the "Afbernoon Watch"; from 4 p.m. to 8 p.m. the two "Dog Watches."
Water Ballast.-Water cearried in Hanks or breakers as ballast. Thie tanks or brealkers should be either full or exeqty.
Water Borne:-Not resting on the ground, but being in the condition of floating.
Water Logged. -The condition of a vessel when, although her hold ie full of water, she does not sink, owing to the bnoyant nature of her cargo, or from other causes.
Waterproping.-Mrail 12 oz. of beeswax in 1 grallon of linseed oil for two hours; paint the oloth with this misture twice or thrice. Cnlour as pequired.
Waynmation through tha water, as under way, head way, stern way, ateerage way, lee way, \&e.
Ways.-Belks of tinaber arranged in a kind of shite to haul vessels up on, or to launch them of.
Weather:-Thus wimiward or "bressy" side of an object. The side on which the "weather" is felt; not to leewand. To weather is to pass on the windward side of an object. In cross tacking the vessel "weathens" another that crosses ahead of her. To weather on another vessel is to gaio on har in a windward direction by holding a better wind than she does; to eat her out of the wind.
Weather Tide of Wearher-going Tüls.-The tide that makes to wind wand, or agaiest the wind.
Wheeh-Osed to give motion to the rudder by ohains which
pass over a barrel, and lead through blocks to the tilier. When the tiller poiuts forward, the chain is put over the barrel first; when the tiller points aft, the chain is put under the barrel first.
Whip.-A purchase consisting of one single block. A penaant vane.
Whis, to. -To bind the ends of rope with twine to prevent their fraying.
Wings of a Ship.-That part of a ship below water near the load line.

Y.

Yard.-A spar used to extend a sail.
Yarn.-A yarn is generally understood to mean one of the parts of a strand of a rope. The strands of old rope are separated, and used as stops for temporarily securing aails when rolled up, \&ce. A narrasive, a tale, a long story, or discourse.
Yaur.-When a vessel's head flies from one direction to another; generally when a vessel does not steer a straight or steady course.
Yoke.-The lower cap on the masthead. It is cut out of solid wood, and either strengthened by an iron plate over the whole of its top, or an inon band round its entire edge. The cross-trees are fitted on the yoke. A yoke is also the crossbar put on the rudder-head of small boats, to which lines. termed yoke lines, are attached for steering.

Cables-
f.

L. PAGK
Lounch (Plato II) 15
Letunch, 100 lb . E.C. mize on 66
Laying, stores required for 64
Lazhinge, short 65
Labels on branch cables. 60-96
Tymang- 90
for lime light, trimoming of 88
Eeud line, marking of 45
Light lime 86
Lighters 16
Lime of mines, laying out (Plate XXVII) 76
Link, explosive, replacing of ธ9
Lraad, working, for ropes 64
Lowering hooks, for R.C. mines (Plate, XXV) 71
Lowering linees and hooks 64
Lowering lines, short, for laying out (Plate XXIV) 71
M.
Main cables, sleak to be allowed 58
Management of -
9
9
small boats.
small boats. Б7
Matrks-
30
30
alignment
alignment
30
30
aligmment, distance between
aligmment, distance between
32
32
inspeotion of 32
Marking buoys, laying out, use of 43
15 erring of lead line 45
Marking buoye used by Royal Nevy 76
Mete, rope 65
Military mechanist corewain, duties of 80
Miner 14
Mine-field, survey of 25
Mline-field Record Book. 49
3tines-
slinging and laying. 62
E.C., layiag out of. 70
doxmant, alinging and laying out of 77
line of laying out, \&c. 74
buoyant, line of leying out 74
raising of 76
identification of 96
position of when slung 63
method of finding pobition of 68
Morse alphahet 82
Mooring steamer (Plate I)Moorings for -
small bosts 4
junotion boxes 55
N.
Nautical terms, glossary of (Appondix III)
Numbers, dutiee of-
when laying out on fork system 72
laying line of mines 76
raising mines 78
0.

Obserpation mines, laying out of Oxygen, bow ohtrined for lime light74
 1 P
Parallar 101
Perbonnel of G.M. versell 20
Pits, connecting $\quad . \quad$.. $\quad . . \quad$.. $\quad 49$
Plans to be provided at stations \quad..
Plotting of position by two sextant singles
Position finders used for survey of minge-fiel dis \quad.. \quad.. \quad.. $\quad 41$.

Preparation of station trawinge (Ohapter III.)
Preparation of atores94

R.

Rnising mines $\because \quad . \quad . \quad . . \quad 76$
Resismg mines, duties of numbers 78
Record Book, Mine-field -i .. 99
Records, working 84
Rod, sounding 45
Ropes, brenking strain of 64
Rope mats 65
Roper, working load of 64
5.

Ilsiling junction-box boatk 58
Doistant.
Gextant, warning of 36

Soheme of dafence 26
staroro-ends--

$$
\text { spare coreg in } 47
$$

idertification of cores of 48
ues and laying of 49
treatrinent of 50
gignalling-
fing 80
classificetion of 81
accuracy of in S.M. Service
81
81
Marse alphabet 82
drill 91
Slinging of dormant buoys 59
slinging and laying, stores required for
54
54
Slinging, notes on rnost suitsble arrangements for 95
Slines, chain
65
65
Sounding..
43
43
Sounding leud, woight of 4.1
Sounding rods 45
Soundings, convenient 43
Store lightor 16
Stores-
Stores-
preparation of 94
identification of 96
Stution pointer 108
Station pointer, to correct error of 104

(Wt. 4146600 F|g1—过 \& S 4005)

[^0]: cozorrin.

[^1]: *Mines stowed in the efter part of the veasel can be hauled along the deck to the bow derriok bis placing them on jumb andele to whieh a ropes taken sound the capstan, is made fast.

[^2]: * In future these gngined will be place日 on the floring of the hold.

[^3]: * This derrick boom need nol plumb over the joggle; in many cases the boom would be of an unwieldy shen, and would not psse under the forestay; "fair-leads" on each bow are suliferents

[^4]:

[^5]: \qquad

[^6]: pipe answers well for this purpose.

[^7]:

[^8]: 43iong．－This dimeotion appilien to cases where great acouracy is maquiged．

[^9]: ctt equal to the depth at low water, wo that the bufy will have to support tio weight of somo of ther iophitu a high whter.

[^10]: * Six feet of chaing is placed between the bwoy cand end of bropiline to eave akaflog the latier,

[^11]: * CAuTjes.- Whe link mble shoulit not be counceded to the unin esble until the $b /$ oy is laid out.

[^12]: - If a manted vessel.

[^13]: ＊figeady will be exaroised in loying miszeg with and without lowarilh hooks．

